An Improved Cellular Automaton Model for Traffic Flow

Author(s):  
Gao Hebei
2009 ◽  
Vol 26 (11) ◽  
pp. 118902 ◽  
Author(s):  
Zhao Bo-Han ◽  
Hu Mao-Bin ◽  
Jiang Rui ◽  
Wu Qing-Song

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Qu ◽  
Mofeng Yang ◽  
Fan Yang ◽  
Bin Ran ◽  
Linchao Li

Traffic flow models are of vital significance to study the traffic system and reproduce typical traffic phenomena. In the process of establishing traffic flow models, human factors need to be considered particularly to enhance the performance of the models. Accordingly, a series of car-following models and cellular automaton models were proposed based on comprehensive consideration of various driving behaviors. Based on the comfortable driving (CD) model, this paper innovatively proposed an improved cellular automaton model incorporating impaired driver’s radical feature (RF). The impaired driver’s radical feature was added to the model with respect to three aspects, that is, desired speed, car-following behavior, and braking behavior. Empirical data obtained from a highway segment was used to initialize impaired driver’s radical feature distribution and calibrate the proposed model. Then, numerical simulations validated that the proposed improved model can well reproduce the traffic phenomena, as shown by the fundamental diagram and space-time diagram. Also, in low-density state, it can be found that the RF model is superior to the CD model in simulating the speed difference characteristics, where the average speed difference of adjacent vehicles for RF model is more consistent with reality. The result also discussed the potential impact of impaired drivers on rear-end collisions. It should be noted that this study is an early stage work to evaluate the existence of impaired driving behavior.


2012 ◽  
Vol 23 (02) ◽  
pp. 1250010 ◽  
Author(s):  
HUA-YAN SHANG ◽  
HAI-JUN HUANG ◽  
WEN-XIANG WU

In real traffic, the right-turn vehicles at intersections are not controlled by signal lights and their effects are neglected. In this paper, we develop a cellular automaton model to formulate the complicated turning behaviors of vehicles at intersections. Simulation results are quite in accord with the observation on the Beijing's 4th ring road. It is found that the right-turn vehicles may produce queue near the intersection, a short lane designed for right-turn has prominent effect in improving traffic flow, but, a too long lane for right-turn cannot further decrease the stop ratio as expected. These findings deepen our understanding on the effects of right-turn vehicles and may help the design and management of intersections.


Sign in / Sign up

Export Citation Format

Share Document