road section
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 174)

H-INDEX

14
(FIVE YEARS 3)

ASTONJADRO ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 233
Author(s):  
Muhammad Kemal Pasha ◽  
Cece Suhendi ◽  
Utamy Sukmayu Saputri

<p>The Sukabumi (Baros) – Sagaranten Km Bdg 115+200 road section which is located in Sukabumi Regency is a road section for the province of West Java. Because the road is always damaged due to being eroded by water infiltration in the rice fields that seeps into the road body area at that location and the soil at that location tends to be unstable based on the results of lab tests having a shear angle value of 4.99ᵒ and having a specific gravity of 17.45, then it is carried out analysis of the existing damaged retaining wall and the design of a new gabion-type retaining wall at that location. The gabion retaining wall building will be designed with 3 designs, the first using a stone volume of 13 m3, the second using a stone volume of 8 m3 and the third using a stone volume of 6.5 m3. Based on the results of the calculation analysis using Rankine theory, it was found that the existing retaining wall was unable to withstand the shearing force which got a check value of 1.18 which should have a value of SF &gt; 1.5, while the 3 gabion plan buildings got the appropriate SF value, namely against the overturning force, shear force and soil bearing capacity.</p>


2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Aisyah Shahirah Juhari ◽  
I Gde Budi Indrawan, Dr. ◽  
Wahyu Wilopo

Several attraction places and agriculture area that essentials for tourism and villager to do their activities are located approximately 6 km along the road of Candi Ijo to Ngoro-Oro in between Prambanan and Patuk sub-districts, Yogyakarta, Indonesia. Many jointed rock masses along the road have the potential to fail. This paper describes the rock mass characteristic and quality determined using the Geological Strength Index (GSI) and Rock Mass Rating (RMR) classifications. The rock mass characteristic and quality were essentially the preliminary results of a study to evaluate stability of the rock slopes along the road of Candi Ijo to Ngoro-Oro. Field observation and laboratory tests were carried out to determine parameters of the GSI and RMR.  The results show that the slopes in the study area consisted of tuffaceous sandstone, vitric tuff, lithic tuff, cemented tuffaceous sandstone, lapilli tuff, subarkose, laminated mudrock, and laminated tuffaceous sandstone. The intact rocks were classified as weak to very strong. The research area consisted of three rock mass qualities, namely fair rock mass quality having GSI between 30 and 45 and RMR between 41 and 60,  good rock mass quality having GSI between 46 to 65 and RMR between 61 and 80, and very good rock mass quality having GSI > 65 and RMR between 81-100. The relationship between GSI and RMR obtained in this study was in good agreement with that proposed by Hoek et al. (1995).


2021 ◽  
Author(s):  
Syed Ahsan Hussain Gardezi ◽  
Nadeem Ahmad Usmani ◽  
Xiao-qing Chen ◽  
Nawaz Ikram ◽  
Sajjad Ahmad ◽  
...  

Abstract The interaction of seismic events with geo-environmental conditions and anthropogenic activities may exacerbate the risk of landslide hazard in a mountainous region. As an example of this, 2005 Kashmir earthquake triggered a large number of shallow to deep slope failures, which was further intensified in following years by human activities notably along road networks, posing a long-term hazard. Hence, this study was planned to evaluate the effectiveness of landslide susceptibility prediction along earthquake affected road-section of Neelum Highway using six different data-driven models. We applied analytical hierarchy process as heuristic approach, weight of evidence and index of entropy as statistical models and multi-layer perceptron, support vector machine and binary logistic regression (BLR) as machine learning models. Initially, 224 landslides locations were marked through field surveys to prepare landslide inventory which was further randomly divided into training (70%) and testing (30%) datasets. Then, 13 landslide causative factors (LCFs) were extracted from geo-spatial database and analysed by measuring collinearity among factors and assessing their contribution in landslide occurrence using different feature selection methods for inclusion in susceptibility modelling. Thereafter, six employed models were trained to produced landslide susceptibility maps of investigated road-section. Finally, the area under receiver operating characteristics (AU-ROC) curve and various statistical measures were applied to validate and compare the performance of modeled landslide susceptibility. The results revealed that no collinearity issue exists among all 13 LCFs, and all six models exhibited satisfying performance in predicting landslide susceptibility of study area. However, BLR model have produced most promising and optimum results as compared to other models with AU-ROC (0.881), Matthew’s correlation coefficient (0.609), Kappa coefficient (0.604), accuracy (0.797) and F-score (0.787). The outcomes of this study can be used as pertinent guide for preventing and managing the landslide disaster risk along Neelum Highway and beyond.


2021 ◽  
Vol 30 (4) ◽  
pp. 683-691
Author(s):  
G. Kavitha ◽  
S. Anbazhagan ◽  
S. Mani

Landslides are among the most prevalent and harmful hazards. Assessment of landslide susceptibility zonation is an important task in reducing the losses of lifeand properties. The present study aims to demarcate the landslide prone areas along the Vathalmalai Ghat road section (VGR) using remote sensing and GIS techniques. In the first step, the landslide causative factors such as geology, geomorphology, slope, slope aspect, land use / land cover, drainage density, lineament density, road buffer and relative relief were assessed. All the factors were assigned to rank and weight based on the slope stability of the landslide susceptibility zones. Then the thematic maps were integrated using ArcGIS tool and landslide susceptibility zonation was obtained and classified into five categories ; very low, low, moderate, high and very high. The landslide susceptibility map is validated with R-index and landslide inventory data collected from the field using GPS measurement. The distribution of susceptibility zones is ; 16.5% located in very low, 28.70% in low, 24.70% in moderate, 19.90% in high and 10.20% in very high zones. The R-index indicated that about 64% landslide occurences correlated with high to very high landslide susceptiblity zones. The model validation indicated that the method adopted in this study is suitable for landslide disaster mapping and planning.


Author(s):  
Yan Pyrig ◽  
Andrii Galkin ◽  
Serhii Oksak ◽  
Yaroslav Ilin ◽  
Yana Shyika

The main factor in the decreasing in the quality of asphalt concrete with time is thehardening of the bituminous binder, which occurs under the influence of high environmentaltemperatures, moisture and oxygen. Considering this, one of the ways to extend the service life ofasphalt pavements isto implement procedures to prevent deterioration of the properties of bituminousbinders, which occurs due to its hardening. To solve the problem of hardening, the use of variousrejuvenators becomes widespread in road maintenance around the world. The aim of the researchwork is to analyze the effect of the domestic rejuvenator Lux «ЕD-L» on the properties of roadbitumen and asphalt concrete made with this binder. The effect of the rejuvenator on the propertiesof bitumen is evaluated in three ways: finding the influence of Lux «ЕD-L» on the properties of theoriginal bitumen; finding the ability to restore the properties of RTFOT-hardened bitumen by addingan additive to the hardened binder; finding the effect on the intensity of hardening by hardening ofbitumen, which includes the Lux «ЕD-L» additive in its composition. In addition, according to thisscheme, it is evaluating the effect of the rejuvenator on asphalt concrete mixtures, which areconditioned according to the method of AASHTO R 30-02. Based on the obtained experimental data,it is found that the modification of the RTFOT-hardened bitumen with Lux «ЕD-L» additive improvesbinder’s properties, which results in the returning of the values of standard quality indicators(penetration, softening point and breaking point temperatures) to the initial level of values quality ofbitumen before hardening. Lux «ЕD-L» additive significantly improves the adhesion properties ofbitumen (both original and aged). Evaluation of the impact of the rejuvenator on the properties ofasphalt mixtures after conditioning confirmed its effectiveness. The properties of asphalt concrete made from mixtures after conditioning, which were treated with the Lux «ЕD-L» additive, accordingto obtained quality indicators is equal to the asphalt concrete with the original bitumen. A field testof the effect of the Lux «ЕD-L» additive on the properties of the asphalt pavement is in process. Theresults of field test will be obtained after 3 and 9 months of operation of the treated road section.


Author(s):  
Anton Holkin ◽  
Aleksandr Pavlov

This article describes a simulation model of a road section in the city of Kazan, created using the AnyLogic simulation modeling system. The process of creating a simulation model, optimization by AnyLogic SIM tools is described, a mathematical model of the flow of cars is constructed based on the results of a simulation experiment using the STATISTICA 10 software package.


2021 ◽  
Author(s):  
◽  
Lockie Hobbs

<p>Two sections from the northern part of the Nga-Waka-A-Kupe Range have been documented in detail. Both sections were expected to cut through sediments of Pleistocene age which at the southern end of the range have been attributed to the Greycliffs Formation, Pukenui Limestone, Hautotara and Te Muna Formations. The Longbush Road section only included the upper Pukenui Limestone to Hautotara Formation. The Hinakura Road section was as expected and included the entire Pukenui Limestone and Hautotara Formation. Previous works in the Popes Head area have recognised the same sequence there. However, only a few correlations can confidently be made between the two areas. This is largely due to the Pukenui Limestone at Popes Head exhibiting a markedly different set of facies to the section in the southern part of the range – its type section.  The facies analysis on the two sections here reveals that the depositional environment for the Pukenui Limestone in the Popes Head area is of a near-coastal environment close to the discharge of a large river, where the nearby type section is interpreted as representing deeper marine conditions. The differences in environments could be due to shallowing section or increased discharge from the river in the Popes Head area. More likely, however, it is a combination of these two factors that result in a shallow-water facies.</p>


2021 ◽  
Author(s):  
◽  
Lockie Hobbs

<p>Two sections from the northern part of the Nga-Waka-A-Kupe Range have been documented in detail. Both sections were expected to cut through sediments of Pleistocene age which at the southern end of the range have been attributed to the Greycliffs Formation, Pukenui Limestone, Hautotara and Te Muna Formations. The Longbush Road section only included the upper Pukenui Limestone to Hautotara Formation. The Hinakura Road section was as expected and included the entire Pukenui Limestone and Hautotara Formation. Previous works in the Popes Head area have recognised the same sequence there. However, only a few correlations can confidently be made between the two areas. This is largely due to the Pukenui Limestone at Popes Head exhibiting a markedly different set of facies to the section in the southern part of the range – its type section.  The facies analysis on the two sections here reveals that the depositional environment for the Pukenui Limestone in the Popes Head area is of a near-coastal environment close to the discharge of a large river, where the nearby type section is interpreted as representing deeper marine conditions. The differences in environments could be due to shallowing section or increased discharge from the river in the Popes Head area. More likely, however, it is a combination of these two factors that result in a shallow-water facies.</p>


2021 ◽  
Vol 11 (23) ◽  
pp. 11364
Author(s):  
Monica Meocci ◽  
Valentina Branzi ◽  
Giulia Martini ◽  
Roberto Arrighi ◽  
Irene Petrizzo

Every year in Italy, there are about 20,000 road accidents involving pedestrians, with a significant number of injuries and deaths. Out of these, about 30% occur at pedestrian crossings, where pedestrians should be protected the most. Here, we propose a new accident prediction model to improve pedestrian safety assessments that allows us to accurately identify the sites with the largest potential safety improvements and define the best treatments to be applied. The accident prediction model was developed using the ISTAT dataset, including information about the fatal and injurious crashes that occurred in Italy in a 5-year period. The model allowed us to estimate the risk level of a road section through a machine-learning approach. Gradient Boosting seems to be an appropriate tool to fit classification models for its flexibility that allows us to capture non-linear relationships that would be difficult to detect via a classical approach. The results show the ability of the model to perform an accurate analysis of the sites included in the dataset. The locations analyzed have been classified based on the potential risk in the following three classes: High, medium, and low. The proposed model represents a solid and reliable tool for practitioners to perform accident analysis with pedestrian involvement.


Sign in / Sign up

Export Citation Format

Share Document