Robust Exponential Stability for Discrete-Time Uncertain BAM Neural Networks Markovian Jump System with Time Delays

Author(s):  
Jiqing Qiu ◽  
Kunfeng Lu
2012 ◽  
Vol 546-547 ◽  
pp. 772-777 ◽  
Author(s):  
Rui Zhang ◽  
Jian Liu ◽  
Ying Zhang ◽  
Chang Tao Wang

In this paper, the global robust exponential stability is discussed for discrete-time bidirectional associative memory (BAM) neural networks with time varying delays. By the linear matrix inequality (LMI) technique and discrete Lyapunov functional combined with inequality techniques, a new global exponential stability criterion of the equilibrium point is obtained for this system. The proposed result is less restrictive, and easier to check in practice. Remarks are made with other previous works to show the superiority of the obtained results, and the simulation example is used to demonstrate the effectiveness of our result.


2014 ◽  
Vol 989-994 ◽  
pp. 1877-1882 ◽  
Author(s):  
Liang Dong Guo ◽  
Jin Nie ◽  
You Shan Zhang

The problem of robustly globally exponential stability in the mean square is investigated for stochastic uncertain discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays and Markovian jumping parameters. The uncertainties are assumed to be the linear fractional form. By using Lyapunov-Krasovskii functional (LKF) method and some novel technique, a delay-dependent exponential stability criterion is established in terms of linear matrix inequalities (LMIs). A numerical example is provided to show the effectiveness and the improvement of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document