Robust Exponential Stability for Discrete-Time Quaternion-Valued Neural Networks with Time Delays and Parameter Uncertainties

2020 ◽  
Vol 51 (3) ◽  
pp. 2317-2335 ◽  
Author(s):  
Yuanshun Tan ◽  
Xiaodong Wang ◽  
Jin Yang ◽  
Jin Hu
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaohui Xu ◽  
Huanbin Xue ◽  
Yiqiang Peng ◽  
Jiye Zhang

In this paper, the stability of switched neural networks (SNNs) with interval parameter uncertainties and time delays is investigated. First, the conditions for the existence and uniqueness of the equilibrium point of the system are discussed. Second, the average dwell time approach and M-matrix property are employed to obtain conditions to ensure the globally exponential stability of the delayed SNNs under constrained switching. Third, by resorting to inequality technique and the idea of vector Lyapunov function, sufficient condition to ensure the robust exponential stability of the delayed SNNs under arbitrary switching is derived. The form of the constructed Lyapunov functions is simple, which has certain commonality in studying delayed SNNs, and the proposed results not only are explicit but also reveal the relationship between the constrained switching and the arbitrary switching of the SNNs. Finally, two numerical examples are presented to illustrate the effectiveness and less conservativeness of the main results compared with the existing literature.


2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Hongwen Xu ◽  
Huaiqin Wu ◽  
Ning Li

The interval exponential state estimation and robust exponential stability for the switched interval neural networks with discrete and distributed time delays are considered. Firstly, by combining the theories of the switched systems and the interval neural networks, the mathematical model of the switched interval neural networks with discrete and distributed time delays and the interval estimation error system are established. Secondly, by applying the augmented Lyapunov-Krasovskii functional approach and available output measurements, the dynamics of estimation error system is proved to be globally exponentially stable for all admissible time delays. Both the existence conditions and the explicit characterization of desired estimator are derived in terms of linear matrix inequalities (LMIs). Moreover, a delay-dependent criterion is also developed, which guarantees the robust exponential stability of the switched interval neural networks with discrete and distributed time delays. Finally, two numerical examples are provided to illustrate the validity of the theoretical results.


2012 ◽  
Vol 546-547 ◽  
pp. 772-777 ◽  
Author(s):  
Rui Zhang ◽  
Jian Liu ◽  
Ying Zhang ◽  
Chang Tao Wang

In this paper, the global robust exponential stability is discussed for discrete-time bidirectional associative memory (BAM) neural networks with time varying delays. By the linear matrix inequality (LMI) technique and discrete Lyapunov functional combined with inequality techniques, a new global exponential stability criterion of the equilibrium point is obtained for this system. The proposed result is less restrictive, and easier to check in practice. Remarks are made with other previous works to show the superiority of the obtained results, and the simulation example is used to demonstrate the effectiveness of our result.


Sign in / Sign up

Export Citation Format

Share Document