Odd-order variable fractional-delay filters with generalized polygonal constraints

Author(s):  
Tian-Bo Deng
2016 ◽  
Vol 26 (02) ◽  
pp. 1750033
Author(s):  
Tian-Bo Deng

Guaranteeing the stability is one of the most critical issues in designing a variable recursive digital filter. In this paper, we first present an odd-order recursive variable model (transfer function) that is used for designing an odd-order variable-magnitude (VM) digital filter, and then we replace the original coefficients of the denominator of the odd-order transfer function with a set of new parameters. These new parameters can ensure that they can take arbitrary values without incurring instability of the designed odd-order VM filter. To make the VM filter coefficients variable, we find all the VM filter coefficients as polynomial functions of the tuning parameter, which includes two phases. The first phase designs a set of recursive digital filters with fixed coefficients (constant filters), and the second phase utilizes a curve-fitting scheme to represent each coefficient as a polynomial function. As a result, the VM filter coefficients become variable, and the proposed parameter-substitution-based denominator coefficients ensure the filter stability. This is the most important contribution of the parameter-substitution-based design scheme. This paper uses the fifth-order demonstrative example to verify the stability guarantee as well as the design accuracy of the obtained the fifth-order VM filter.


Sign in / Sign up

Export Citation Format

Share Document