Combined Classifier for Plant Classification and Identification from Leaf Image Based on Visual Attributes

Author(s):  
Parul Mittal ◽  
Manie Kansal ◽  
Hardeep kaur Jhajj
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yanping Zhang ◽  
Jing Peng ◽  
Xiaohui Yuan ◽  
Lisi Zhang ◽  
Dongzi Zhu ◽  
...  

AbstractRecognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS (Multi-feature Combined Cultivar Identification System), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry (Prunus avium L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at http://www.mfcis.online.


Open Mind ◽  
2020 ◽  
Vol 4 ◽  
pp. 40-56 ◽  
Author(s):  
Erez Freud ◽  
Marlene Behrmann ◽  
Jacqueline C. Snow

According to the influential “Two Visual Pathways” hypothesis, the cortical visual system is segregated into two pathways, with the ventral, occipitotemporal pathway subserving object perception, and the dorsal, occipitoparietal pathway subserving the visuomotor control of action. However, growing evidence suggests that the dorsal pathway also plays a functional role in object perception. In the current article, we present evidence that the dorsal pathway contributes uniquely to the perception of a range of visuospatial attributes that are not redundant with representations in ventral cortex. We describe how dorsal cortex is recruited automatically during perception, even when no explicit visuomotor response is required. Importantly, we propose that dorsal cortex may selectively process visual attributes that can inform the perception of potential actions on objects and environments, and we consider plausible developmental and cognitive mechanisms that might give rise to these representations. As such, we consider whether naturalistic stimuli, such as real-world solid objects, might engage dorsal cortex more so than simplified or artificial stimuli such as images that do not afford action, and how the use of suboptimal stimuli might limit our understanding of the functional contribution of dorsal cortex to visual perception.


Computation ◽  
2017 ◽  
Vol 5 (4) ◽  
pp. 26 ◽  
Author(s):  
Michalis Papakostas ◽  
Evaggelos Spyrou ◽  
Theodoros Giannakopoulos ◽  
Giorgos Siantikos ◽  
Dimitrios Sgouropoulos ◽  
...  

Author(s):  
Zbigniew Omiotek

The purpose of the study was to construct an efficient classifier that, along with a given reduced set of discriminant features, could be used as a part of the computer system in automatic identification and classification of ultrasound images of the thyroid gland, which is aimed to detect cases affected by Hashimoto’s thyroiditis. A total of 10 supervised learning techniques and a majority vote for the combined classifier were used. Two models were proposed as a result of the classifier’s construction. The first one is based on the K-nearest neighbours method (for K = 7). It uses three discriminant features and affords sensitivity equal to 88.1%, specificity of 66.7% and classification error at a level of 21.8%. The second model is a combined classifier, which was constructed using three-component classifiers. They are based on the K-nearest neighbours method (for K = 7), linear discriminant analysis and a boosting algorithm. The combined classifier is based on 48 discriminant features. It allows to achieve the classification sensitivity equal to 88.1%, specificity of 69.4% and classification error at a level of 20.5%. The combined classifier allows to improve the classification quality compared to the single model. The models, built as a part of the automatic computer system, may support the physician, especially in first-contact hospitals, in diagnosis of cases that are difficult to recognise based on ultrasound images. The high sensitivity of constructed classification models indicates high detection accuracy of the sick cases, and this is beneficial to the patients from a medical point of view.


Sign in / Sign up

Export Citation Format

Share Document