An Intelligent Speech Interaction Model for Mobile Teaching

Author(s):  
Huibing Cao
1987 ◽  
Author(s):  
Norma P. Simon ◽  
Beverly Hitchins
Keyword(s):  

1992 ◽  
Vol 2 (1) ◽  
pp. 55-62 ◽  
Author(s):  
J. J. Arenzon ◽  
R. M. C. de Almeida ◽  
J. R. Iglesias ◽  
T. J. P. Penna ◽  
P. M. C. de Oliveira
Keyword(s):  

2020 ◽  
Vol 30 (3) ◽  
pp. 153-170
Author(s):  
Yaoyu Pan ◽  
Xiufeng Yang ◽  
Song-Charng Kong ◽  
Chol-Bum M. Kweon

2020 ◽  
Author(s):  
Radu Talmazan ◽  
Klaus R. Liedl ◽  
Bernhard Kräutler ◽  
Maren Podewitz

We analyze the mechanism of the topochemically controlled difunctionalization of C60 and anthracene, where an anthracene molecule is transferred from one C60 monoadduct to another one under exclusive formation of equal amounts of C60 and the difficult to make antipodal C60 bisadduct. Our herein disclosed dispersion corrected DFT studies show the anthracene transfer to take place in a synchronous retro Diels-Alder/Diels-Alder reaction: an anthracene molecule dissociates from one fullerene under formation of an intermediate, while already undergoing stabilizing interactions with both neighboring fullerenes, facilitating the reaction kinetically. In the intermediate, a planar anthracene molecule is sandwiched between two neighboring fullerenes and forms equally strong "double-decker" type pi-pi stacking interactions with both of these fullerenes. Analysis with the distorsion interaction model shows that the anthracene unit of the intermediate is almost planar with minimal distorsions. This analysis sheds light on the existence of noncovalent interactions engaging both faces of a planar polyunsaturated ring and two convex fullerene surfaces in an unprecedented 'inverted sandwich' structure. Hence, it sheds light on new strategies to design functional fullerene based materials.<br>


2019 ◽  
Author(s):  
Rebecca Lindsey ◽  
Nir Goldman ◽  
Laurence E. Fried ◽  
Sorin Bastea

<p>The interatomic Chebyshev Interaction Model for Efficient Simulation (ChIMES) is based on linear combinations of Chebyshev polynomials describing explicit two- and three-body interactions. Recently, the ChIMES model has been developed and applied to a molten metallic system of a single atom type (carbon), as well as a non-reactive molecular system of two atom types at ambient conditions (water). Here, we continue application of ChIMES to increasingly complex problems through extension to a reactive system. Specifically, we develop a ChIMES model for carbon monoxide under extreme conditions, with built-in transferability to nearby state points. We demonstrate that the resulting model recovers much of the accuracy of DFT while exhibiting a 10<sup>4</sup>increase in efficiency, linear system size scalability and the ability to overcome the significant system size effects exhibited by DFT.</p>


Sign in / Sign up

Export Citation Format

Share Document