Using graph grammars and meta-modeling to process code mobility in LRN models

Author(s):  
Nardjess Dehimi ◽  
Allaoua Chaoui
Author(s):  
Wafa Chama ◽  
Allaoua Chaoui ◽  
Seidali Rehab

This paper proposes a Model Driven Engineering automatic translation approach based on the integration of rewriting logic formal specification and UML semi-formal models. This integration is a contribution in formalizing UML models since it lacks for formal semantics. It aims at providing UML with the capabilities of rewriting logic and its Maude language to control and detect incoherencies in their diagrams. Rewriting logic Maude language allows simulation and verification of system's properties using its LTL model-checker. This automatic translation approach is based on meta-modeling and graph transformation since UML diagrams are graphs. More precisely, the authors have proposed five meta-models and three triple graph grammars to perform the translation process. The authors have used Eclipse Generative Modeling tools: Eclipse Modeling Framework (EMF) for meta-modeling, Graphical Modeling Framework (GMF) for generating visual modeling tools and TGG Interpreter for proposing triple graph grammars. The approach is illustrated through an example.


2015 ◽  
Vol 72 ◽  
pp. 114-130 ◽  
Author(s):  
Veera Ragavan Sampath Kumar ◽  
Madhavan Shanmugavel ◽  
Velappa Ganapathy ◽  
Bijan Shirinzadeh

2012 ◽  
Vol 23 (7) ◽  
pp. 1635-1655 ◽  
Author(s):  
Yang ZOU ◽  
Jian LÜ ◽  
Chun CAO ◽  
Hao HU ◽  
Wei SONG ◽  
...  

Author(s):  
Nils Weidmann ◽  
Anthony Anjorin

AbstractIn the field of Model-Driven Engineering, Triple Graph Grammars (TGGs) play an important role as a rule-based means of implementing consistency management. From a declarative specification of a consistency relation, several operations including forward and backward transformations, (concurrent) synchronisation, and consistency checks can be automatically derived. For TGGs to be applicable in realistic application scenarios, expressiveness in terms of supported language features is very important. A TGG tool is schema compliant if it can take domain constraints, such as multiplicity constraints in a meta-model, into account when performing consistency management tasks. To guarantee schema compliance, most TGG tools allow application conditions to be attached as necessary to relevant rules. This strategy is problematic for at least two reasons: First, ensuring compliance to a sufficiently expressive schema for all previously mentioned derived operations is still an open challenge; to the best of our knowledge, all existing TGG tools only support a very restricted subset of application conditions. Second, it is conceptually demanding for the user to indirectly specify domain constraints as application conditions, especially because this has to be completely revisited every time the TGG or domain constraint is changed. While domain constraints can in theory be automatically transformed to obtain the required set of application conditions, this has only been successfully transferred to TGGs for a very limited subset of domain constraints. To address these limitations, this paper proposes a search-based strategy for achieving schema compliance. We show that all correctness and completeness properties, previously proven in a setting without domain constraints, still hold when schema compliance is to be additionally guaranteed. An implementation and experimental evaluation are provided to support our claim of practical applicability.


Sign in / Sign up

Export Citation Format

Share Document