Spatial-temporal nonparametric background subtraction in dynamic scenes

Author(s):  
Shengping Zhang ◽  
Hongxun Yao ◽  
Shaohui Liu
2010 ◽  
Vol 22 (5) ◽  
pp. 751-766 ◽  
Author(s):  
Antoni B. Chan ◽  
Vijay Mahadevan ◽  
Nuno Vasconcelos

Author(s):  
Mourad Moussa ◽  
Maha Hmila ◽  
Ali Douik

Background subtraction methods are widely exploited for moving object detection in videos in many computer vision applications, such as traffic monitoring, human motion capture and video surveillance. The two most distinguishing and challenging aspects of such approaches in this application field are how to build correctly and efficiently the background model and how to prevent the false detection between; (1) moving background pixels and moving objects, (2) shadows pixel and moving objects. In this paper we present a new method for image segmentation using background subtraction. We propose an effective scheme for modelling and updating a background adaptively in dynamic scenes focus on statistical learning. We also introduce a method to detect sudden illumination changes and segment moving objects during these changes. Unlike the traditional color levels provided by RGB sensor aren’t the best choice, for this reason we propose a recursive algorithm that contributes to select very significant color space. Experimental results show significant improvements in moving object detection in dynamic scenes such as waving tree leaves and sudden illumination change, and it has a much lower computational cost compared to Gaussian mixture model.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 128 ◽  
Author(s):  
Tianming Yu ◽  
Jianhua Yang ◽  
Wei Lu

Advancing the background-subtraction method in dynamic scenes is an ongoing timely goal for many researchers. Recently, background subtraction methods have been developed with deep convolutional features, which have improved their performance. However, most of these deep methods are supervised, only available for a certain scene, and have high computational cost. In contrast, the traditional background subtraction methods have low computational costs and can be applied to general scenes. Therefore, in this paper, we propose an unsupervised and concise method based on the features learned from a deep convolutional neural network to refine the traditional background subtraction methods. For the proposed method, the low-level features of an input image are extracted from the lower layer of a pretrained convolutional neural network, and the main features are retained to further establish the dynamic background model. The evaluation of the experiments on dynamic scenes demonstrates that the proposed method significantly improves the performance of traditional background subtraction methods.


Author(s):  
SHENGPING ZHANG ◽  
HONGXUN YAO ◽  
SHAOHUI LIU

Traditional background subtraction methods perform poorly when scenes contain dynamic backgrounds such as waving tree branches, spouting fountain, illumination changes, camera jitters, etc. In this paper, from the view of spatial context, we present a novel and effective dynamic background method with three contributions. First, we present a novel local dependency descriptor, called local dependency histogram (LDH), to effectively model the spatial dependencies between a pixel and its neighboring pixels. The spatial dependencies contain substantial evidence for differentiating dynamic background regions from moving objects of interest. Second, based on the proposed LDH, an effective approach to dynamic background subtraction is proposed, in which each pixel is modeled as a group of weighted LDHs. Labeling a pixel as foreground or background is done by comparing the LDH computed in current frame against its model LDHs. The model LDHs are adaptively updated by the current LDH. Finally, unlike traditional approaches using a fixed threshold to judge whether a pixel matches to its model, an adaptive thresholding technique is also proposed. Experimental results on a diverse set of dynamic scenes validate that the proposed method significantly outperforms traditional methods for dynamic background subtraction.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


Sign in / Sign up

Export Citation Format

Share Document