strong suppression
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 58)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Tasaul Sk ◽  
Doyel Rakshit ◽  
Ajay Kumar Ghosh

Abstract Nonlinear current-voltage (IV) characteristics of Bi-2212 observed in the presence of the nonmagnetic impurity have been explained incorporating the idea of Berezinskii-Kosterlitz - Thouless (BKT). An exponent (η) is extracted as a function of temperature (T) for several Bi2-xSr2 CaCu2-x ZnxO8+δ (Bi-2212) superconducting samples. Within the framework of the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory we have extracted the superfluid phase stiffness (SPS) as a function of T. A scaling between the SPS and critical temperature is observed. Strong suppression by the nonmagnetic impurity has been explained using the idea of localized phase fluctuations in the superconducting planes.


2021 ◽  
Author(s):  
Sarina M Bernazzani ◽  
Braveen B Joseph ◽  
Philli T Edeen ◽  
Shaonil Binti ◽  
David S Fay

Molting is a widespread developmental process in which the external extracellular matrix (ECM), the cuticle, is remodeled to allow for organismal growth and environmental adaptation. Studies in the nematode Caenorhabditis elegans have identified a diverse set of molting-associated factors including signaling molecules, intracellular trafficking regulators, ECM components, and ECM-modifying enzymes such as matrix metalloproteases. C. elegans NEKL-2 and NEKL-3, two conserved members of the NEK family of protein kinases, are essential for molting and promote the endocytosis of environmental steroid-hormone precursors by the epidermis. Steroids in turn drive the cyclic induction of many genes required for molting. Here we report a novel role for the sole C. elegans ADAM-meltrin metalloprotease family member, ADM-2, as a negative regulator of molting. Whereas loss of adm-2 led to strong suppression of molting defects in partial loss-of-function nekl mutants, overexpression of ADM-2 induced molting defects in wild-type animals. CRISPR genome editing implicated the Zn-binding motif within the metalloprotease domain as critical for mediating the effects of ADM-2 on molting. ADM-2 is expressed in the epidermis, and its trafficking through the endo-lysosomal network was disrupted after NEKL depletion. We also identified the epidermally expressed low-density lipoprotein receptor-related protein, LRP-1, as a candidate target of ADM-2 regulation. Whereas loss of ADM-2 activity led to the upregulation of LRP-1, ADM-2 overexpression caused a reduction in LRP-1 abundance, suggesting that ADM-2 may function as a sheddase for LRP-1. We propose that loss of adm-2 suppresses molting defects in nekl mutants by eliminating a negative regulator of LRP-1, thereby compensating for defects in the efficiency of LRP-1 and sterol uptake. Our findings emphasize the importance of endocytic trafficking for both the internalization of factors that promote molting and the removal of proteins that would otherwise be deleterious to the molting process.  


2021 ◽  
Vol 923 (1) ◽  
pp. 108
Author(s):  
Xinle Shang ◽  
Ang Li

Abstract We revisit the short-term post-glitch relaxation of the Vela 2000 glitch in the simple two-component model of the pulsar glitch by making use of the latest realistic equations of states from the microscopic Brueckner and the relativistic Brueckner theories for neutron stars, which can reconcile with the available astrophysical constraints. We show that to fit both the glitch size and the post-glitch jumps in frequency derivatives approximately 1 minute after the glitch, the mass of the Vela pulsar is necessarily small, and there may be demands for a stiff equation of state (which results in a typical stellar radius larger than ∼12.5 km) and a strong suppression of the pairing gap in the nuclear medium. We discuss the implications of this result on the understanding of pulsar glitches.


2021 ◽  
Author(s):  
Yiran Liu ◽  
Jackson Champer

Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some potential target species are haplodiploid, in which males develop from unfertilized eggs and thus have only one copy of each chromosome. This prevents drive conversion, a substantial disadvantage compared to diploids where drive conversion can take place in both sexes. Here, we study the characteristics of homing suppression gene drives in haplodiploids and find that a drive targeting a female fertility gene could still be successful. However, such drives are less powerful than in diploids. They are substantially more vulnerable to high resistance allele formation in the embryo due to maternally deposited Cas9 and gRNA and also to somatic cleavage activity. Examining models of continuous space where organisms move over a landscape, we find that haplodiploid suppression drives surprisingly perform nearly as well as in diploids, possibly due to their ability to spread further before inducing strong suppression. Together, these results indicate that gene drive can potentially be used to effectively suppress haplodiploid populations.


Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 797-804
Author(s):  
Yevhen Karpun ◽  
Volodymyr Parchenko ◽  
Tetiana Fotina ◽  
Denys Demianenko ◽  
Anatolii Fotin ◽  
...  

New S-substituted 4-alkyl-5-((3-(pyridin-4-yl)-1H-1,2,4-triazole-5-yl)thio)methyl)-4H-1,2,4-triazole-3-thiol derivatives have been designed, synthesized and studied their antimicrobial activity on 11 standard Gram-positive and Gram-negative microorganism strains. Their spectral and physicochemical parameters were established using modern comprehensive methods of analysis, including 1H NMR spectroscopy, GC-MS and elemental analysis.It has been found that compound 2a exhibits strong suppression of 5 test strains (MBC = 15.6 µg/mL). Compound 4a showed moderate inhibition of Salmonella pullorum, Escherichia coli O2, Salmonella enteritidis strains (MBC = 31.25 µg/mL) Compound 6a was sensitive toward ten tested bacteria at 31.25 µg/mL concentration.


Author(s):  
L. C. Garcia de Andrade

Motivated by Palle’s investigation on the handness of chirality of vorticity in Einstein–Cartan cosmology [Entropy 5 (2014)], several aspects of chiral torsional handness in magnetogenesis and cosmology are presented. In the first one, we obtain torsion bounds from massive photons and axial anomalies. In the second, we deal with magnetogenesis from photon mass and in the third, we discuss chiral torsion degrees of freedom to obtain a torsion cosmological constant dependent solution. The torsion solution decays fast and implies a strong suppression of torsion at present universe. Our result contains the Poplawski [Phys. Lett. B (2010)] results in the case axial torsion vector associated to Einstein–Cartan fermionic sector matter and conformal anomalies of quarks. In the third example, a magnetic field bound from chiral torsionic dynamos is obtained as [Formula: see text]. In the non-minimal cosmological models, chiral dynamos are sourced by massive photons, London currents and chiral magnetic effect (CME). Chiral chemical potential is found to be mimic by torsion. Cosmological constant bound [Formula: see text] is found. At the early universe, the cosmological constant [Formula: see text] is obtained. Torsion used in the present universe is [Formula: see text]. In the last and fourth example, chiral anisotropic currents are obtained and magnetic helicity is shown to depend upon torsion when the chiral chemical potential is non-constant.


2021 ◽  
Author(s):  
Ákos János Varga ◽  
Hajnalka Breuer

AbstractThe mean climatological distribution of convective environmental parameters from the ERA5 reanalysis and WRF regional climate simulations is evaluated using radiosonde observations. The investigation area covers parts of Central and Eastern Europe. Severe weather proxies are calculated from daily 1200 UTC sounding measurements and collocated ERA5 and WRF pseudo-profiles in the 1985–2010 period. The pressure level and the native ERA5 reanalysis, and two WRF runs with grid spacings of 50 and 10 km are verified. ERA5 represents convective parameters remarkably well with correlation coefficients higher than 0.9 for multiple variables and mean errors close to zero for precipitable water and mid-tropospheric lapse rate. Monthly mean mixed-layer CAPE biases are reduced in the full hybrid-sigma ERA5 dataset by 20–30 J/kg compared to its pressure level version. The WRF model can reproduce the annual cycle of thunderstorm predictors but with considerably lower correlations and higher errors than ERA5. Surface elevation differences between the stations and the corresponding grid points in the 50-km WRF run lead to biases and false error compensations in the convective indices. The 10-km grid spacing is sufficient to avoid such discrepancies. The evaluation of convection-related parameters contributes to a better understanding of regional climate model behavior. For example, a strong suppression of convective activity might explain precipitation underestimation in summer. A decreasing correlation of WRF-derived wind shear away from the western domain boundaries indicates a deterioration of the large-scale circulation as the constraining effect of the driving reanalysis weakens.


2021 ◽  
Vol 118 (41) ◽  
pp. e2106828118
Author(s):  
Nigel W. Beebe ◽  
Dan Pagendam ◽  
Brendan J. Trewin ◽  
Andrew Boomer ◽  
Matt Bradford ◽  
...  

Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.


2021 ◽  
Vol 22 (19) ◽  
pp. 10679
Author(s):  
Hille Suojalehto ◽  
Joseph Ndika ◽  
Irmeli Lindström ◽  
Liisa Airaksinen ◽  
Kirsi Karvala ◽  
...  

A subset of adult-onset asthma patients attribute their symptoms to damp and moldy buildings. Symptoms of idiopathic environmental intolerance (IEI) may resemble asthma and these two entities overlap. We aimed to evaluate if a distinct clinical subtype of asthma related to damp and moldy buildings can be identified, to unravel its corresponding pathomechanistic gene signatures, and to investigate potential molecular similarities with IEI. Fifty female adult-onset asthma patients were categorized based on exposure to building dampness and molds during disease initiation. IEI patients (n = 17) and healthy subjects (n = 21) were also included yielding 88 study subjects. IEI was scored with the Quick Environmental Exposure and Sensitivity Inventory (QEESI) questionnaire. Inflammation was evaluated by blood cell type profiling and cytokine measurements. Disease mechanisms were investigated via gene set variation analysis of RNA from nasal biopsies and peripheral blood mononuclear cells. Nasal biopsy gene expression and plasma cytokine profiles suggested airway and systemic inflammation in asthma without exposure to dampness (AND). Similar evidence of inflammation was absent in patients with dampness-and-mold-related asthma (AAD). Gene expression signatures revealed a greater degree of similarity between IEI and dampness-related asthma than between IEI patients and asthma not associated to dampness and mold. Blood cell transcriptome of IEI subjects showed strong suppression of immune cell activation, migration, and movement. QEESI scores correlated to blood cell gene expression of all study subjects. Transcriptomic analysis revealed clear pathomechanisms for AND but not AAD patients. Furthermore, we found a distinct molecular pathological profile in nasal and blood immune cells of IEI subjects, including several differentially expressed genes that were also identified in AAD samples, suggesting IEI-type mechanisms.


2021 ◽  
Author(s):  
Marco Ricci ◽  
Valentina Peona ◽  
Cristian Taccioli

The natural occurrence of closely related species that show drastic differences in lifespan and cancer incidence raised the interest in finding the particular adaptations and genomic characteristics underlying the evolution of long lifespans. Studies on transposable elements (TEs) have more and more linked them to ageing and cancer development. In this study, we compared the TE content and dynamics in the genomes of four Rodent and six Chiroptera species that show very different lifespans and cancer susceptibility including the long-lived and refractory to cancer naked mole rat (Heterocephalus glaber), the long-lived fruit bats (Pteropus vampyrus, Rousettus aegypticaus) and the short-lived velvety free-tailed bat (Molossus molossus). By analysing the patterns of recent TE accumulation (TEs that are potentially currently active) in high-quality genome assemblies, we found that the shared genomic characteristics between long-lived species that are refractory to cancer, is the strong suppression, or negative selection against the accumulation, of non-LTR retrotransposons. All the short-lived species did show a recent accumulation of these TEs. Non-LTR retrotransposons have been often found to take part in the immune response of the host against viral infections, but their dysregulation can lead to phenomena of "sterile inflammation" and "inflammageing". Therefore, we hypothesise that the uncontrolled non-LTR retrotransposon activity is an important factor explaining the evolution of shorter lifespans in both Rodents and Chiroptera species and potentially in all mammals. Finally, these results suggest that non-LTR retrotransposons can be agents promoting cancer and ageing in mammals thus they may be targets of future oncological therapies.


Sign in / Sign up

Export Citation Format

Share Document