dynamic principal component analysis
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 19 ◽  
pp. 71-77
Author(s):  
Matthias G. Ehrnsperger ◽  
Maximilian Noll ◽  
Stefan Punzet ◽  
Uwe Siart ◽  
Thomas F. Eibert

Abstract. Background and clutter suppression techniques are important towards the successful application of radar in complex environments. We investigate eigenimage based methodologies such as principal component analysis (PCA) and apply it to frequency modulated continuous wave (FMCW) radar. The designed dynamic principal component analysis (dPCA) algorithm dynamically adjusts the number of eigenimages that are utilised for the processing of the signal. Furthermore, the algorithm adapts towards the number of objects in the field of view as well as the estimated distances. For the experimental evaluation, the dPCA algorithm is implemented in a multi-static FMCW radar prototype that operates in the K-band at 24 GHz. With this background and clutter removal method, it is possible to increase the signal-to-clutter-ratio (SCR) by 4.9 dB compared to standard PCA with mean removal (MR).


Author(s):  
Fayed Alshammri ◽  
Jiazhu Pan

AbstractThis paper proposes an extension of principal component analysis to non-stationary multivariate time series data. A criterion for determining the number of final retained components is proposed. An advance correlation matrix is developed to evaluate dynamic relationships among the chosen components. The theoretical properties of the proposed method are given. Many simulation experiments show our approach performs well on both stationary and non-stationary data. Real data examples are also presented as illustrations. We develop four packages using the statistical software R that contain the needed functions to obtain and assess the results of the proposed method.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 958
Author(s):  
Jacques Olivier ◽  
Chris Aldrich

Reliable control of grinding circuits is critical to more efficient operation of concentrator plants. In many cases, operators still play a key role in the supervisory control of grinding circuits but are not always able to act timely to deal with disturbances, such as changes in the mill feed. Reliable process monitoring can play a major role in assisting operators to take more timely and reliable action. These monitoring systems need to be able to deal with what could be complex nonlinear dynamic behavior of comminution circuits. To this end, a dynamic process monitoring approach is proposed based on the use of convolutional neural networks. To take advantage of the availability of pretrained neural networks, the grinding circuit variables are treated as time series which can be converted into images. Features extracted from these networks are subsequently analyzed in a multivariate process monitoring framework with an underlying principal component model. Two variants of the approach based on convolutional neural networks are compared with dynamic principal component analysis on a simulated and real-world case studies. In the first variant, the pretrained neural network is used as a feature extractor without any further training. In the second variant, features are extracted following further training of the network in a synthetic binary classification problem designed to enhance the extracted features. The second approach yielded nominally better results than what could be obtained with dynamic principal component analysis and the approach using features extracted by transfer learning.


Author(s):  
Ying Du ◽  
Tonghai Wu ◽  
Shengxi Zhou ◽  
Viliam Makis

Lubricating oil contains a lot of tribological information of the machine and plays an important role in machine health. Oil degrades with serving time and causes severe wear afterwards, which is a complex dynamic process, and difficult to be accurately described by a single property. Therefore, the main purpose of deterioration prediction is to estimate the remaining useful life that the oil can still fulfill its functions by analyzing oil condition monitoring data. With a large amount of oil condition monitoring data collected, a vector autoregressive model is applied to the original oil data to describe the dynamic deterioration process. Then dynamic principal component analysis, an effective dimensionality reduction method, is employed to obtain the principal components capturing the most information of the oil data. The proportional hazards model is then built to calculate the failure risk of the lubricating oil based on the condition monitoring information, where its baseline function represents the aging process assuming to follow the Weibull distribution and its positive link function represents the influence of covariates (the principal components) on the failure risk. Finally, the remaining useful life prediction of lubricating oil can be obtained by explicit formulas of the characteristics such as the conditional reliability function and the mean residual life function. This work provides an approach to assess the health of lubricating oil, and a guidance for oil maintenance strategy.


Sign in / Sign up

Export Citation Format

Share Document