Comparing Gaussian Mixture Model and Hidden Markov Model to Classify Unique Physical Activities from Accelerometer Sensor Data

Author(s):  
Arindam Dutta ◽  
Owen Ma ◽  
Meynard Toledo ◽  
Matthew P. Buman ◽  
Daniel W. Bliss
2021 ◽  
Vol 11 (7) ◽  
pp. 3138
Author(s):  
Mingchi Zhang ◽  
Xuemin Chen ◽  
Wei Li

In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to detect pipeline leakage location. A long pipeline is divided into several sections and the leakage occurs in different section that is defined as different state of hidden Markov model (HMM). The hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative studies based on different numbers of states using Gaussian mixture model-hidden Markov model (GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between detected state sequence and actual state sequence is measured by micro F1 score. The micro F1 score approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the pipeline is divided into three sections. In the experiment that divides the pipeline as five sections, the micro F1 score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve better performance compared to GMM-HMM method.


2021 ◽  
Vol 336 ◽  
pp. 06004
Author(s):  
Jiawei Xu ◽  
Qian Luo

Human action recognition is a challenging field in recent years. Many traditional signal processing and machine learning methods are gradually trying to be applied in this field. This paper uses a hidden Markov model based on mixed Gaussian to solve the problem of human action recognition. The model treats the observed human actions as samples which conform to the Gaussian mixture model, and each Gaussian mixture model is determined by a state variable. The training of the model is the process that obtain the model parameters through the expectation maximization algorithm. The simulation results show that the Hidden Markov Model based on the mixed Gaussian distribution can perform well in human action recognition.


Author(s):  
Li Zhao ◽  
Laurence Rilett ◽  
Mm Shakiul Haque

This paper develops a methodology for simultaneously modeling lane-changing and car-following behavior of automated vehicles on freeways. Naturalistic driving data from the Safety Pilot Model Deployment (SPMD) program are used. First, a framework to process the SPMD data is proposed using various data analytics techniques including data fusion, data mining, and machine learning. Second, pairs of automated host vehicle and their corresponding front vehicle are identified along with their lane-change and car-following relationship data. Using these data, a lane-changing-based car-following (LCCF) model, which explicitly considers lane-change and car-following behavior simultaneously, is developed. The LCCF model is based on Gaussian-mixture-based hidden Markov model theory and is disaggregated into two processes: LCCF association and LCCF dissociation. These categories are based on the result of the lane change. The overall goal is to predict a driver’s lane-change intention using the LCCF model. Results show that the model can predict the lane-change event in the order of 0.6 to 1.3 s before the moment of the vehicle body across the lane boundary. In addition, the execution times of lane-change maneuvers average between 0.55 and 0.86 s. The LCCF model allows the intention time and execution time of driver’s lane-change behavior to be forecast, which will help to develop better advanced driver assistance systems for vehicle controls with respect to lane-change and car-following warning functions.


Sign in / Sign up

Export Citation Format

Share Document