Next day peak load forecasting using an artificial neural network with modified backpropagation learning algorithm

Author(s):  
T. Onoda
Author(s):  
Ramesh Kumar V ◽  
Pradipkumar Dixit

The paper presents an Artificial Neural Network (ANN) model for short-term load forecasting of daily peak load. A multi-layered feed forward neural network with Levenberg-Marquardt learning algorithm is used because of its good generalizing property and robustness in prediction. The input to the network is in terms of historical daily peak load data and corresponding daily peak temperature data. The network is trained to predict the load requirement ahead. The effectiveness of the proposed ANN approach to the short-term load forecasting problems is demonstrated by practical data from the Bangalore Electricity Supply Company Limited (BESCOM). The comparison between the proposed and the conventional methods is made in terms of percentage error and it is found that the proposed ANN model gives more accurate predictions with optimal number of neurons in the hidden layer.


2016 ◽  
Vol 5 (4) ◽  
pp. 126 ◽  
Author(s):  
I MADE DWI UDAYANA PUTRA ◽  
G. K. GANDHIADI ◽  
LUH PUTU IDA HARINI

Weather information has an important role in human life in various fields, such as agriculture, marine, and aviation. The accurate weather forecasts are needed in order to improve the performance of various fields. In this study, use artificial neural network method with backpropagation learning algorithm to create a model of weather forecasting in the area of ??South Bali. The aim of this study is to determine the effect of the number of neurons in the hidden layer and to determine the level of accuracy of the method of artificial neural network with backpropagation learning algorithm in weather forecast models. Weather forecast models in this study use input of the factors that influence the weather, namely air temperature, dew point, wind speed, visibility, and barometric pressure.The results of testing the network with a different number of neurons in the hidden layer of artificial neural network method with backpropagation learning algorithms show that the increase in the number of neurons in the hidden layer is not directly proportional to the value of the accuracy of the weather forecasts, the increase in the number of neurons in the hidden layer does not necessarily increase or decrease value accuracy of weather forecasts we obtain the best accuracy rate of 51.6129% on a network model with three neurons in the hidden layer.


Sign in / Sign up

Export Citation Format

Share Document