percentage error
Recently Published Documents


TOTAL DOCUMENTS

1938
(FIVE YEARS 1278)

H-INDEX

29
(FIVE YEARS 11)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-24
Author(s):  
Sizhe An ◽  
Yigit Tuncel ◽  
Toygun Basaklar ◽  
Gokul K. Krishnakumar ◽  
Ganapati Bhat ◽  
...  

Movement disorders, such as Parkinson’s disease, affect more than 10 million people worldwide. Gait analysis is a critical step in the diagnosis and rehabilitation of these disorders. Specifically, step and stride lengths provide valuable insights into the gait quality and rehabilitation process. However, traditional approaches for estimating step length are not suitable for continuous daily monitoring since they rely on special mats and clinical environments. To address this limitation, this article presents a novel and practical step-length estimation technique using low-power wearable bend and inertial sensors. Experimental results show that the proposed model estimates step length with 5.49% mean absolute percentage error and provides accurate real-time feedback to the user.


2022 ◽  
Vol 24 (3) ◽  
pp. 1-26
Author(s):  
Nagaraj V. Dharwadkar ◽  
Anagha R. Pakhare ◽  
Vinothkumar Veeramani ◽  
Wen-Ren Yang ◽  
Rajinder Kumar Mallayya Math

This paper presents design and experiments for a production line monitoring system. The system is designed based on an existing production line which mapping to the smart grid standards. The Discrete wavelet transform (DWT) and regression neural network (RNN) are applied to the operation modes data analysis. DWT used to preprocess the signals to remove noise from the raw signals. The output of DWT energy distribution has given as an input to the GRNN model. The neural network GRNN architecture involves multi-layer structures. Mean Absolute Percentage Error (MAPE) loss has used in the GRNN model, which is used to forecast the time-series data. Current research results can only apply to the single production line but in future, it will used for multiple production lines.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

This paper presents design and experiments for a production line monitoring system. The system is designed based on an existing production line which mapping to the smart grid standards. The Discrete wavelet transform (DWT) and regression neural network (RNN) are applied to the operation modes data analysis. DWT used to preprocess the signals to remove noise from the raw signals. The output of DWT energy distribution has given as an input to the GRNN model. The neural network GRNN architecture involves multi-layer structures. Mean Absolute Percentage Error (MAPE) loss has used in the GRNN model, which is used to forecast the time-series data. Current research results can only apply to the single production line but in future, it will used for multiple production lines.


2022 ◽  
Vol 8 (4) ◽  
pp. 278-280
Author(s):  
Sreeja Shanker J ◽  
H L Vishwanath ◽  
Vibha C ◽  
Muralidhara Krishna

To categorize and calculate the percentage error of pre-analytical variables in the clinical biochemistry laboratory. Prospective observational study conducted for two months with documenting the frequency and type of pre-analytical errors occurring in venous samples. The total errors recorded were 1.31%. Insufficient volume followed by haemolysis amounted to a major proportion of errors. Continuous pre-analytical phase evaluation and taking corrective measures to make this phase error-free, have to be done.


Climate ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Daniela Debone ◽  
Tiago Dias Martins ◽  
Simone Georges El Khouri Miraglia

Despite the concern about climate change and the associated negative impacts, fossil fuels continue to prevail in the global energy consumption. This paper aimed to propose the first model that relates CO2 emissions of Sao Paulo, the main urban center emitter in Brazil, with gross national product and energy consumption. Thus, we investigated the accuracy of three different methods: multivariate linear regression, elastic-net regression, and multilayer perceptron artificial neural networks. Comparing the results, we clearly demonstrated the superiority of artificial neural networks when compared with the other models. They presented better results of mean absolute percentage error (MAPE = 0.76%) and the highest possible coefficient of determination (R2 = 1.00). This investigation provides an innovative integrated climate-economic approach for the accurate prediction of carbon emissions. Therefore, it can be considered as a potential valuable decision-support tool for policymakers to design and implement effective environmental policies.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
Pyae-Pyae Phyo ◽  
Yung-Cheol Byun ◽  
Namje Park

Meeting the required amount of energy between supply and demand is indispensable for energy manufacturers. Accordingly, electric industries have paid attention to short-term energy forecasting to assist their management system. This paper firstly compares multiple machine learning (ML) regressors during the training process. Five best ML algorithms, such as extra trees regressor (ETR), random forest regressor (RFR), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), and K neighbors regressor (KNN) are trained to build our proposed voting regressor (VR) model. Final predictions are performed using the proposed ensemble VR and compared with five selected ML benchmark models. Statistical autoregressive moving average (ARIMA) is also compared with the proposed model to reveal results. For the experiments, usage energy and weather data are gathered from four regions of Jeju Island. Error measurements, including mean absolute percentage error (MAPE), mean absolute error (MAE), and mean squared error (MSE) are computed to evaluate the forecasting performance. Our proposed model outperforms six baseline models in terms of the result comparison, giving a minimum MAPE of 0.845% on the whole test set. This improved performance shows that our approach is promising for symmetrical forecasting using time series energy data in the power system sector.


Forecasting ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 72-94
Author(s):  
Roberto Vega ◽  
Leonardo Flores ◽  
Russell Greiner

Accurate forecasts of the number of newly infected people during an epidemic are critical for making effective timely decisions. This paper addresses this challenge using the SIMLR model, which incorporates machine learning (ML) into the epidemiological SIR model. For each region, SIMLR tracks the changes in the policies implemented at the government level, which it uses to estimate the time-varying parameters of an SIR model for forecasting the number of new infections one to four weeks in advance. It also forecasts the probability of changes in those government policies at each of these future times, which is essential for the longer-range forecasts. We applied SIMLR to data from in Canada and the United States, and show that its mean average percentage error is as good as state-of-the-art forecasting models, with the added advantage of being an interpretable model. We expect that this approach will be useful not only for forecasting COVID-19 infections, but also in predicting the evolution of other infectious diseases.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 562
Author(s):  
Yong Wang ◽  
Mingliang Chang ◽  
Long Chen ◽  
Shouxi Wang ◽  
Shihao Fan ◽  
...  

The reinjection of the fire-flooding exhaust is a novel disposal process for handling the exhaust produced by the in-situ combustion technology. For reasonable process design and safe operation, it is of great significance to select an optimum property calculation method for the fire-flooding exhaust. However, due to the compositional particularity and the wide range of operating parameters during reinjection, the state equations in predicting the exhaust properties over the wide range of operating parameters have not been studied clearly yet. Hence, this paper investigates the applicability of several commonly-used equations of state, including the Soave–Redlich–Kwong equation, Peng–Robinson equation, Lee–Kesler–Plocker equation, Benedict–Webb–Rubin–Starling equation, and GERG-2008 equations. Employing Aspen Plus software, the gas densities, compressibility factors, volumetric coefficients, and dew points for five exhaust compositions are calculated. In comparison with the experimental data comprehensively, the result indicates that the Soave–Redlich–Kwong equation shows the highest precision over a wide range of temperature and pressure. The mean absolute percentage error for the above four parameters is 3.84%, 5.17%, 5.53%, and 4.33%, respectively. This study provides a reference for the accurate calculation of the physical properties of fire-flooding exhausts when designing and managing a reinjection system of fire-flooding exhaust.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinda Thalia Andariesta ◽  
Meditya Wasesa

PurposeThis research presents machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic using multisource Internet data.Design/methodology/approachTo develop the prediction models, this research utilizes multisource Internet data from TripAdvisor travel forum and Google Trends. Temporal factors, posts and comments, search queries index and previous tourist arrivals records are set as predictors. Four sets of predictors and three distinct data compositions were utilized for training the machine learning models, namely artificial neural networks (ANNs), support vector regression (SVR) and random forest (RF). To evaluate the models, this research uses three accuracy metrics, namely root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).FindingsPrediction models trained using multisource Internet data predictors have better accuracy than those trained using single-source Internet data or other predictors. In addition, using more training sets that cover the phenomenon of interest, such as COVID-19, will enhance the prediction model's learning process and accuracy. The experiments show that the RF models have better prediction accuracy than the ANN and SVR models.Originality/valueFirst, this study pioneers the practice of a multisource Internet data approach in predicting tourist arrivals amid the unprecedented COVID-19 pandemic. Second, the use of multisource Internet data to improve prediction performance is validated with real empirical data. Finally, this is one of the few papers to provide perspectives on the current dynamics of Indonesia's tourism demand.


2022 ◽  
Vol 11 (2) ◽  
pp. 387
Author(s):  
Hiroteru Kamimura ◽  
Hirofumi Nonaka ◽  
Masaya Mori ◽  
Taichi Kobayashi ◽  
Toru Setsu ◽  
...  

Deep learning is a subset of machine learning that can be employed to accurately predict biological transitions. Eliminating hepatitis B surface antigens (HBsAgs) is the final therapeutic endpoint for chronic hepatitis B. Reliable predictors of the disappearance or reduction in HBsAg levels have not been established. Accurate predictions are vital to successful treatment, and corresponding efforts are ongoing worldwide. Therefore, this study aimed to identify an optimal deep learning model to predict the changes in HBsAg levels in daily clinical practice for inactive carrier patients. We identified patients whose HBsAg levels were evaluated over 10 years. The results of routine liver biochemical function tests, including serum HBsAg levels for 1, 2, 5, and 10 years, and biometric information were obtained. Data of 90 patients were included for adaptive training. The predictive models were built based on algorithms set up by SONY Neural Network Console, and their accuracy was compared using statistical analysis. Multiple regression analysis revealed a mean absolute percentage error of 58%, and deep learning revealed a mean absolute percentage error of 15%; thus, deep learning is an accurate predictive discriminant tool. This study demonstrated the potential of deep learning algorithms to predict clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document