Compressed sensing based on K-SVD algorithm for signal recovery in BOTDA system

Author(s):  
Yong Dong ◽  
Ya-nan Yang ◽  
Kuanglu Yu
Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM77-SM93 ◽  
Author(s):  
Tim T. Lin ◽  
Felix J. Herrmann

An explicit algorithm for the extrapolation of one-way wavefields is proposed that combines recent developments in information theory and theoretical signal processing with the physics of wave propagation. Because of excessive memory requirements, explicit formulations for wave propagation have proven to be a challenge in 3D. By using ideas from compressed sensing, we are able to formulate the (inverse) wavefield extrapolation problem on small subsets of the data volume, thereby reducing the size of the operators. Compressed sensing entails a new paradigm for signal recovery that provides conditions under which signals can be recovered from incomplete samplings by nonlinear recovery methods that promote sparsity of the to-be-recovered signal. According to this theory, signals can be successfully recovered when the measurement basis is incoherent with the representa-tion in which the wavefield is sparse. In this new approach, the eigenfunctions of the Helmholtz operator are recognized as a basis that is incoherent with curvelets that are known to compress seismic wavefields. By casting the wavefield extrapolation problem in this framework, wavefields can be successfully extrapolated in the modal domain, despite evanescent wave modes. The degree to which the wavefield can be recovered depends on the number of missing (evanescent) wavemodes and on the complexity of the wavefield. A proof of principle for the compressed sensing method is given for inverse wavefield extrapolation in 2D, together with a pathway to 3D during which the multiscale and multiangular properties of curvelets, in relation to the Helmholz operator, are exploited. The results show that our method is stable, has reduced dip limitations, and handles evanescent waves in inverse extrapolation.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 126 ◽  
Author(s):  
Bin Wang ◽  
Li Wang ◽  
Hao Yu ◽  
Fengming Xin

The compressed sensing theory has been widely used in solving undetermined equations in various fields and has made remarkable achievements. The regularized smooth L0 (ReSL0) reconstruction algorithm adds an error regularization term to the smooth L0(SL0) algorithm, achieving the reconstruction of the signal well in the presence of noise. However, the ReSL0 reconstruction algorithm still has some flaws. It still chooses the original optimization method of SL0 and the Gauss approximation function, but this method has the problem of a sawtooth effect in the later optimization stage, and the convergence effect is not ideal. Therefore, we make two adjustments to the basis of the ReSL0 reconstruction algorithm: firstly, we introduce another CIPF function which has a better approximation effect than Gauss function; secondly, we combine the steepest descent method and Newton method in terms of the algorithm optimization. Then, a novel regularized recovery algorithm named combined regularized smooth L0 (CReSL0) is proposed. Under the same experimental conditions, the CReSL0 algorithm is compared with other popular reconstruction algorithms. Overall, the CReSL0 algorithm achieves excellent reconstruction performance in terms of the peak signal-to-noise ratio (PSNR) and run-time for both a one-dimensional Gauss signal and two-dimensional image reconstruction tasks.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 834
Author(s):  
Jin ◽  
Yang ◽  
Li ◽  
Liu

Compressed sensing theory is widely used in the field of fault signal diagnosis and image processing. Sparse recovery is one of the core concepts of this theory. In this paper, we proposed a sparse recovery algorithm using a smoothed l0 norm and a randomized coordinate descent (RCD), then applied it to sparse signal recovery and image denoising. We adopted a new strategy to express the (P0) problem approximately and put forward a sparse recovery algorithm using RCD. In the computer simulation experiments, we compared the performance of this algorithm to other typical methods. The results show that our algorithm possesses higher precision in sparse signal recovery. Moreover, it achieves higher signal to noise ratio (SNR) and faster convergence speed in image denoising.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1227 ◽  
Author(s):  
Dingfei Jin ◽  
Yue Yang ◽  
Tao Ge ◽  
Daole Wu

In this paper, we propose a fast sparse recovery algorithm based on the approximate l0 norm (FAL0), which is helpful in improving the practicability of the compressed sensing theory. We adopt a simple function that is continuous and differentiable to approximate the l0 norm. With the aim of minimizing the l0 norm, we derive a sparse recovery algorithm using the modified Newton method. In addition, we neglect the zero elements in the process of computing, which greatly reduces the amount of computation. In a computer simulation experiment, we test the image denoising and signal recovery performance of the different sparse recovery algorithms. The results show that the convergence rate of this method is faster, and it achieves nearly the same accuracy as other algorithms, improving the signal recovery efficiency under the same conditions.


2020 ◽  
Vol 14 (6) ◽  
pp. 1235-1243
Author(s):  
C. Y. Xia ◽  
Y. X. Gao ◽  
L. Li ◽  
J. Yu

2015 ◽  
Vol 63 ◽  
pp. 66-78 ◽  
Author(s):  
Vidya L. ◽  
Vivekanand V. ◽  
Shyamkumar U. ◽  
Deepak Mishra

2013 ◽  
Vol 9 (8) ◽  
pp. 798537 ◽  
Author(s):  
ZheTao Li ◽  
JingXiong Xie ◽  
DengBiao Tu ◽  
Young-June Choi

Sign in / Sign up

Export Citation Format

Share Document