A Novel Method on Summarization of Video Using Local Ternary Pattern and Local Phase Quantization

Author(s):  
Jharna Majumdhar ◽  
Sasmita Kumari Nayak
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ji-Yong An ◽  
Fan-Rong Meng ◽  
Zhu-Hong You ◽  
Yu-Hong Fang ◽  
Yu-Jun Zhao ◽  
...  

We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments onYeastandHumandatasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on theYeastdataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.


2020 ◽  
pp. 004051752096140
Author(s):  
Li Yuan ◽  
Xue Gong ◽  
Junping Liu ◽  
Yali Yang ◽  
Muli Liu

Colored spun fabrics are difficult to accurately characterize with a local binary pattern due to texture anisotropy caused by the uneven distribution of dyed fibers. In this paper, we present a texture representation model based on spatial and frequency characteristics. The proposed model takes advantage of the local binary pattern and local phase quantization to extract the texture of woven fabric. Then, the two features are connected in series, and the features of dimension reduction by principal component analysis are used to represent the texture of the fabric image. Finally, the hierarchical hybrid classifier is applied to classify the fabric structure. The experimental results show that the local phase quantization feature is robust to the fuzzy transformation and the texture representation model has a stronger ability of texture description than the single local binary pattern feature, with the average classification accuracy of 97.59% on 336 samples. In addition, compared with the deep learning algorithm, the texture representation algorithm can ensure a high classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document