Economic dispatch planning based on considerations of wind power generation and pumped storage hydroelectric plants for isolated power systems

Author(s):  
Ming-Tse Kuo ◽  
Shiue-Der Lu ◽  
Ming-Chang Tsou
2017 ◽  
Vol 42 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Ulagammai Meyyappan

Wind speed and wind power generation are characterized by their inherent variability and uncertainty. To overcome this drawback, an accurate prediction of wind speed is essential. The purpose of this article is to develop a hybrid wavelet neural network model for wind speed forecasting and thus, in turn, for wind power generation. The combined optimal economic scheduling of the wind generators and conventional generators has also been investigated in this article. This article proposes shuffled frog leap algorithm for solving economic dispatch problem in power systems. The non-linear characteristics of the generator such as prohibited operating zone and non-smooth functions are considered. The feasibility of the proposed algorithm is demonstrated for 5 units, 6 units and 15 units systems and it is compared with the existing solution techniques. The results show that the proposed algorithm is indeed capable of handling economic dispatch problems.


2012 ◽  
Vol 260-261 ◽  
pp. 50-55 ◽  
Author(s):  
Soichiro Uehara ◽  
Katsutoshi Nishijima ◽  
Masaki Mitobe ◽  
Jing Hao Ma ◽  
Ya Zhou Zhai ◽  
...  

Electric power storage facilities for stabilization of the voltage and the frequency are necessary to interconnect wind power generations with power systems. However, conventional pumped storage generation systems can’t combine with wind power generations because these can’t work intermittently. Therefore we consider a new system featuring a pumped storage generation with the Archimedean screw. The Archimedean screw can hold water without electricity supplied, and can continue pumping while it is powered on. Therefore, the Archimedean screw enables the combination of the pumped storage generation and wind power generation. In this study, simulation has been done to examine the feasibility.


2021 ◽  
Author(s):  
Reza Ghaffari

Wind power generation is uncertain and intermittent accentuating variability. Currently in many power systems worldwide, the total generation-load unbalance caused by mismatch between forecast and actual wind power output is handled by automatic governor control and real-time 5-minute balancing markets, which are operated by the independent system operators for maintaining reliable operation of power systems. Mechanisms such as automatic governor control and real-time 5-minute balancing markets are in place to correct the mismatch between the load forecast and the actual load. They are not designed to address increased uncertainty and variability introduced by large-scale wind power or solar power generation expected in the future. Thus, large-scale wind power generation with increased uncertainty and intermittency causing variability poses a techno-economic challenge of sourcing least cost load balancing services (reserve).


2014 ◽  
Vol 50 (18) ◽  
pp. 1312-1314 ◽  
Author(s):  
S.J. Plathottam ◽  
P. Ranganathan ◽  
H. Salehfar

Sign in / Sign up

Export Citation Format

Share Document