wide area
Recently Published Documents


TOTAL DOCUMENTS

5944
(FIVE YEARS 1219)

H-INDEX

86
(FIVE YEARS 13)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-31
Author(s):  
Chaojie Gu ◽  
Linshan Jiang ◽  
Rui Tan ◽  
Mo Li ◽  
Jun Huang

Low-power wide-area network technologies such as long-range wide-area network (LoRaWAN) are promising for collecting low-rate monitoring data from geographically distributed sensors, in which timestamping the sensor data is a critical system function. This article considers a synchronization-free approach to timestamping LoRaWAN uplink data based on signal arrival time at the gateway, which well matches LoRaWAN’s one-hop star topology and releases bandwidth from transmitting timestamps and synchronizing end devices’ clocks at all times. However, we show that this approach is susceptible to a frame delay attack consisting of malicious frame collision and delayed replay. Real experiments show that the attack can affect the end devices in large areas up to about 50,000, m 2 . In a broader sense, the attack threatens any system functions requiring timely deliveries of LoRaWAN frames. To address this threat, we propose a LoRaTS gateway design that integrates a commodity LoRaWAN gateway and a low-power software-defined radio receiver to track the inherent frequency biases of the end devices. Based on an analytic model of LoRa’s chirp spread spectrum modulation, we develop signal processing algorithms to estimate the frequency biases with high accuracy beyond that achieved by LoRa’s default demodulation. The accurate frequency bias tracking capability enables the detection of the attack that introduces additional frequency biases. We also investigate and implement a more crafty attack that uses advanced radio apparatuses to eliminate the frequency biases. To address this crafty attack, we propose a pseudorandom interval hopping scheme to enhance our frequency bias tracking approach. Extensive experiments show the effectiveness of our approach in deployments with real affecting factors such as temperature variations.


Network ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 36-52
Author(s):  
Miguel Rosendo ◽  
Jorge Granjal

The constant evolution in communication infrastructures will enable new Internet of Things (IoT) applications, particularly in areas that, up to today, have been mostly enabled by closed or proprietary technologies. Such applications will be enabled by a myriad of wireless communication technologies designed for all types of IoT devices, among which are the Long-Range Wide-Area Network (LoRaWAN) or other Low-power and Wide-Area Networks (LPWAN) communication technologies. This applies to many critical environments, such as industrial control and healthcare, where wireless communications are yet to be broadly adopted. Two fundamental requirements to effectively support upcoming critical IoT applications are those of energy management and security. We may note that those are, in fact, contradictory goals. On the one hand, many IoT devices depend on the usage of batteries while, on the other hand, adequate security mechanisms need to be in place to protect devices and communications from threats against their stability and security. With thismotivation in mind, we propose a solution to address the management, in tandem, of security and energy in LoRaWAN IoT communication environments. We propose and evaluate an architecture in the context of which adaptation logic is used to manage security and energy dynamically, with the goal of guaranteeing appropriate security, while promoting the lifetime of constrained sensing devices. The proposed solution was implemented and experimentally evaluated and was observed to successfully manage security and energy. Security and energy are managed in line with the requirements of the application at hand, the characteristics of the constrained sensing devices employed and the detection, as well as the threat, of particular types of attacks.


2022 ◽  
Vol 16 (5) ◽  
Author(s):  
Yao Song ◽  
Limin Xiao ◽  
Liang Wang ◽  
Guangjun Qin ◽  
Bing Wei ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 255
Author(s):  
Xin Gao ◽  
Sundaresh Ram ◽  
Rohit C. Philip ◽  
Jeffrey J. Rodríguez ◽  
Jeno Szep ◽  
...  

In low-resolution wide-area aerial imagery, object detection algorithms are categorized as feature extraction and machine learning approaches, where the former often requires a post-processing scheme to reduce false detections and the latter demands multi-stage learning followed by post-processing. In this paper, we present an approach on how to select post-processing schemes for aerial object detection. We evaluated combinations of each of ten vehicle detection algorithms with any of seven post-processing schemes, where the best three schemes for each algorithm were determined using average F-score metric. The performance improvement is quantified using basic information retrieval metrics as well as the classification of events, activities and relationships (CLEAR) metrics. We also implemented a two-stage learning algorithm using a hundred-layer densely connected convolutional neural network for small object detection and evaluated its degree of improvement when combined with the various post-processing schemes. The highest average F-scores after post-processing are 0.902, 0.704 and 0.891 for the Tucson, Phoenix and online VEDAI datasets, respectively. The combined results prove that our enhanced three-stage post-processing scheme achieves a mean average precision (mAP) of 63.9% for feature extraction methods and 82.8% for the machine learning approach.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 164
Author(s):  
Mukarram A. M. Almuhaya ◽  
Waheb A. Jabbar ◽  
Noorazliza Sulaiman ◽  
Suliman Abdulmalek

Low-power wide-area network (LPWAN) technologies play a pivotal role in IoT applications, owing to their capability to meet the key IoT requirements (e.g., long range, low cost, small data volumes, massive device number, and low energy consumption). Between all obtainable LPWAN technologies, long-range wide-area network (LoRaWAN) technology has attracted much interest from both industry and academia due to networking autonomous architecture and an open standard specification. This paper presents a comparative review of five selected driving LPWAN technologies, including NB-IoT, SigFox, Telensa, Ingenu (RPMA), and LoRa/LoRaWAN. The comparison shows that LoRa/LoRaWAN and SigFox surpass other technologies in terms of device lifetime, network capacity, adaptive data rate, and cost. In contrast, NB-IoT technology excels in latency and quality of service. Furthermore, we present a technical overview of LoRa/LoRaWAN technology by considering its main features, opportunities, and open issues. We also compare the most important simulation tools for investigating and analyzing LoRa/LoRaWAN network performance that has been developed recently. Then, we introduce a comparative evaluation of LoRa simulators to highlight their features. Furthermore, we classify the recent efforts to improve LoRa/LoRaWAN performance in terms of energy consumption, pure data extraction rate, network scalability, network coverage, quality of service, and security. Finally, although we focus more on LoRa/LoRaWAN issues and solutions, we introduce guidance and directions for future research on LPWAN technologies.


2022 ◽  
pp. 195-230
Author(s):  
Magdi S. Mahmoud ◽  
Haris M. Khalid ◽  
Mutaz M. Hamdan

Sign in / Sign up

Export Citation Format

Share Document