scholarly journals Arbitrary view action recognition via transfer dictionary learning on synthetic training data

Author(s):  
Jingtian Zhang ◽  
Lining Zhang ◽  
Hubert P. H. Shum ◽  
Ling Shao
2021 ◽  
Vol 18 (4) ◽  
pp. 378-381 ◽  
Author(s):  
Luis A. Bolaños ◽  
Dongsheng Xiao ◽  
Nancy L. Ford ◽  
Jeff M. LeDue ◽  
Pankaj K. Gupta ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Christine Dewi ◽  
Rung-Ching Chen ◽  
Yan-Ting Liu ◽  
Xiaoyi Jiang ◽  
Kristoko Dwi Hartomo

Author(s):  
M. Takadoya ◽  
M. Notake ◽  
M. Kitahara ◽  
J. D. Achenbach ◽  
Q. C. Guo ◽  
...  

Sparse representation is an emerging topic among researchers. The method to represent the huge volume of dense data as sparse data is much needed for various fields such as classification, compression and signal denoising. The base of the sparse representation is dictionary learning. In most of the dictionary learning approaches, the dictionary is learnt based on the input training signals which consumes more time. To solve this issue, the shift-invariant dictionary is used for action recognition in this work. Shift-Invariant Dictionary (SID) is that the dictionary is constructed in the initial stage with shift-invariance of initial atoms. The advantage of the proposed SID based action recognition method is that it requires minimum training time and achieves highest accuracy.


2018 ◽  
Vol 126 (9) ◽  
pp. 942-960 ◽  
Author(s):  
Nikolaus Mayer ◽  
Eddy Ilg ◽  
Philipp Fischer ◽  
Caner Hazirbas ◽  
Daniel Cremers ◽  
...  

Author(s):  
Pradeep Natarajan ◽  
Ramakant Nevatia

Building a system for recognition of human actions from video involves two key problems - 1) designing suitable low-level features that are both efficient to extract from videos and are capable of distinguishing between events 2) developing a suitable representation scheme that can bridge the large gap between low-level features and high-level event concepts, and also handle the uncertainty and errors inherent in any low-level video processing. Graphical models provide a natural framework for representing state transitions in events and also the spatio-temporal constraints between the actors and events. Hidden Markov models(HMMs) have been widely used in several action recognition applications but the basic representation has three key deficiencies: These include unrealistic models for the duration of a sub-event, not encoding interactions among multiple agents directly and not modeling the inherent hierarchical organization of these activities. Several extensions have been proposed to address one or more of these issues and have been successfully applied in various gesture and action recognition domains. More recently, conditionalrandomfields (CRF) are becoming increasingly popular since they allow complex potential functions for modeling observations and state transitions, and also produce superior performance to HMMs when sufficient training data is available. The authors will first review the various extension of these graphical models, then present the theory of inference and learning in them and finally discuss their applications in various domains.


Sign in / Sign up

Export Citation Format

Share Document