scholarly journals A three-dimensional virtual mouse generates synthetic training data for behavioral analysis

2021 ◽  
Vol 18 (4) ◽  
pp. 378-381 ◽  
Author(s):  
Luis A. Bolaños ◽  
Dongsheng Xiao ◽  
Nancy L. Ford ◽  
Jeff M. LeDue ◽  
Pankaj K. Gupta ◽  
...  
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Christine Dewi ◽  
Rung-Ching Chen ◽  
Yan-Ting Liu ◽  
Xiaoyi Jiang ◽  
Kristoko Dwi Hartomo

2021 ◽  
Vol 13 (4) ◽  
pp. 101
Author(s):  
Alexandru Dorobanțiu ◽  
Valentin Ogrean ◽  
Remus Brad

The mesh-type coronary model, obtained from three-dimensional reconstruction using the sequence of images produced by computed tomography (CT), can be used to obtain useful diagnostic information, such as extracting the projection of the lumen (planar development along an artery). In this paper, we have focused on automated coronary centerline extraction from cardiac computed tomography angiography (CCTA) proposing a 3D version of U-Net architecture, trained with a novel loss function and with augmented patches. We have obtained promising results for accuracy (between 90–95%) and overlap (between 90–94%) with various network training configurations on the data from the Rotterdam Coronary Artery Centerline Extraction benchmark. We have also demonstrated the ability of the proposed network to learn despite the huge class imbalance and sparse annotation present in the training data.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 884
Author(s):  
Chia-Ming Tsai ◽  
Yi-Horng Lai ◽  
Yung-Da Sun ◽  
Yu-Jen Chung ◽  
Jau-Woei Perng

Numerous sensors can obtain images or point cloud data on land, however, the rapid attenuation of electromagnetic signals and the lack of light in water have been observed to restrict sensing functions. This study expands the utilization of two- and three-dimensional detection technologies in underwater applications to detect abandoned tires. A three-dimensional acoustic sensor, the BV5000, is used in this study to collect underwater point cloud data. Some pre-processing steps are proposed to remove noise and the seabed from raw data. Point clouds are then processed to obtain two data types: a 2D image and a 3D point cloud. Deep learning methods with different dimensions are used to train the models. In the two-dimensional method, the point cloud is transferred into a bird’s eye view image. The Faster R-CNN and YOLOv3 network architectures are used to detect tires. Meanwhile, in the three-dimensional method, the point cloud associated with a tire is cut out from the raw data and is used as training data. The PointNet and PointConv network architectures are then used for tire classification. The results show that both approaches provide good accuracy.


Author(s):  
M. Takadoya ◽  
M. Notake ◽  
M. Kitahara ◽  
J. D. Achenbach ◽  
Q. C. Guo ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Runnan He ◽  
Shiqi Xu ◽  
Yashu Liu ◽  
Qince Li ◽  
Yang Liu ◽  
...  

Medical imaging provides a powerful tool for medical diagnosis. In the process of computer-aided diagnosis and treatment of liver cancer based on medical imaging, accurate segmentation of liver region from abdominal CT images is an important step. However, due to defects of liver tissue and limitations of CT imaging procession, the gray level of liver region in CT image is heterogeneous, and the boundary between the liver and those of adjacent tissues and organs is blurred, which makes the liver segmentation an extremely difficult task. In this study, aiming at solving the problem of low segmentation accuracy of the original 3D U-Net network, an improved network based on the three-dimensional (3D) U-Net, is proposed. Moreover, in order to solve the problem of insufficient training data caused by the difficulty of acquiring labeled 3D data, an improved 3D U-Net network is embedded into the framework of generative adversarial networks (GAN), which establishes a semi-supervised 3D liver segmentation optimization algorithm. Finally, considering the problem of poor quality of 3D abdominal fake images generated by utilizing random noise as input, deep convolutional neural networks (DCNN) based on feature restoration method is designed to generate more realistic fake images. By testing the proposed algorithm on the LiTS-2017 and KiTS19 dataset, experimental results show that the proposed semi-supervised 3D liver segmentation method can greatly improve the segmentation performance of liver, with a Dice score of 0.9424 outperforming other methods.


2018 ◽  
Vol 126 (9) ◽  
pp. 942-960 ◽  
Author(s):  
Nikolaus Mayer ◽  
Eddy Ilg ◽  
Philipp Fischer ◽  
Caner Hazirbas ◽  
Daniel Cremers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document