Design of MI Fuzzy-PID controller with derivative filter co-efficient by Symbiotic Organism Search algorithm for two-area reheat thermal power system

Author(s):  
Sagar Nayak ◽  
Aishwarya Samal ◽  
Tridipta Kumar Pati

This paper presents the application of fuzzy PID controller and fuzzy PID controller aided with derivative filter (fuzzy PIDF) to analyse the automatic generation control (AGC) issue of a two-area interconnected multi-unit thermal power system having reheat type turbine under deregulated market scenario. This paper, demonstrates the traditional AGC of two-area power system modified under different transactions like as POOLCO based transaction, transaction under bilateral agreement and contract violation transaction to study the system dynamics. Hybrid LUS (Local Unimodal Sampling) and TLBO (Teaching Learning Based Optimization) (LUS-TLBO) technique is proposed to optimize the input and output scaling factors i.e. gains of fuzzy PID controller and gains & filter co-efficient of the derivative filter of the proposed fuzzy PIDF controller under different transactions in the competing market. Comparative performance analysis is carried out to show the supremacy of the proposed fuzzy PIDF controller against proposed fuzzy PID controller and a recently published work on integral controller with Interline Power Flow Controller (IPFC) and Redox Flow batteries (RFB) units.


The huge band variation in wind speed causes unpredictable swing in power generation and hence large divergence in system frequency leading to unpredictable situation for standalone applications. To overcome the above difficulties, WTG (wind turbine generator) is integrated with conventional thermal power system along with other distributed generation units such as FC (fuel cell), DEG (diesel engine generator), AE (aqua-electrolyser) and BESS (battery energy storage system) which form a hybrid power system. This paper concerns with automatic generation control (AGC) of an interconnected two area hybrid power system as mentioned above. Design and implementation of suitable controllers for AGC of above hybrid power system is a challenging job for operational and design engineers. Various control schemes proposed in this paper are conventional PID & PID controller with derivative filter (PIDF) and fuzzy-PID controller without (fuzzy-PID) and with derivative filter (fuzzy-PIDF) to achieve improved performance of AGC system in terms of frequency profile. The values of gain parameters of proposed controllers are designed using hybrid LUS-TLBO (Local Unimodal Sampling-Teaching Learning Based Optimization) algorithm. Superiority of fuzzy-PIDF controller over other proposed controllers are addressed. Robustness study of proposed fuzzy-PIDF controller is thoroughly demonstrated with change in system parameters and loading pattern. The work is further extended to analyze the transient phenomena of the AGC for a 3-area interconnected system having nonlinearities such as reheat turbine, governor dead band along with generation rate constraint for the thermal generating units.


2016 ◽  
Vol 10 (15) ◽  
pp. 3764-3776 ◽  
Author(s):  
Pradeep Kumar Mohanty ◽  
Binod Kumar Sahu ◽  
Tridipta Kumar Pati ◽  
Sidhartha Panda ◽  
Sanjeeb Kumar Kar

Sign in / Sign up

Export Citation Format

Share Document