Power station for large scale photovoltaic power plants

Author(s):  
Cristian Verdugo ◽  
Jose Ignacio Candela ◽  
Alvaro Luna ◽  
Pedro Rodriguez
2020 ◽  
Vol 274 ◽  
pp. 115213 ◽  
Author(s):  
Eduard Bullich-Massagué ◽  
Francisco-Javier Cifuentes-García ◽  
Ignacio Glenny-Crende ◽  
Marc Cheah-Mañé ◽  
Mònica Aragüés-Peñalba ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 780-789 ◽  
Author(s):  
Tohru Kohno ◽  
Kenichi Gokita ◽  
Hideyuki Shitanishi ◽  
Masahito Toyosaki ◽  
Tomoharu Nakamura ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 226 ◽  
Author(s):  
Qais Alsafasfeh ◽  
Omar Saraereh ◽  
Imran Khan ◽  
Sunghwan Kim

Large-scale photovoltaic power station access to the grid will profoundly change the fault current characteristics of the power station’s outgoing lines. This change results in adaptive problems in traditional protection phase selection components, which may cause incorrect actions in reclosing, protection ranging, and distance protection. Based on the fault current characteristics of the large-scale photovoltaic power station transmission line, this paper analyzes the adaptability of the phase current difference mutation and the sequence component phase selection component in protecting the Photovoltaic (PV) power plant side of the transmission line. Based on the fault current analytical formula, the phase relationship between the phase current difference and the current sequence component under different control targets, such as suppressing negative sequence current, suppressing the active power fluctuation, and suppressing the reactive power fluctuation, is derived. The operational performances of the phase–phase current difference of the abrupt phase selection component and the sequence component phase selection component of the power station side are degraded, which may cause incorrect operation of the phase selection component. Based on the actual engineering parameters of a PV power plant, a simulation model was built in Power System Computer Aided Design (PSCAD) to verify the correctness of the theoretical analysis.


Solar Energy ◽  
2019 ◽  
Vol 194 ◽  
pp. 485-498 ◽  
Author(s):  
Héctor R. Robles–Campos ◽  
Bernardo J. Azuaje–Berbecí ◽  
Christopher J. Scheller ◽  
Alejandro Angulo ◽  
Fernando Mancilla–David

2019 ◽  
Vol 122 ◽  
pp. 02004 ◽  
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

In 2017, electricity generation from renewable sources contributed more than one quarter (30.7%) to total EU-28 gross electricity consumption. Wind power is for the first time the most important source, followed closely by hydro power. The growth in electricity from photovoltaic energy has been dramatic, rising from just 3.8 TWh in 2007, reaching a level of 119.5 TWh in 2017. Over this period, the contribution of photovoltaic energy to all electricity generated in the EU-28 from renewable energy sources increased from 0.7% to 12.3%. During this period the investment cost of a photovoltaic power plant has decreased considerably. Fundamentally, the cost of solar panels and inverters has decreased by more than 50%. The solar photovoltaic energy potential depends on two parameters: global solar irradiation and photovoltaic panel efficiency. The average solar irradiation in Spain is 1,600 kWh m-2. This paper analyzes the economic feasibility of developing large scale solar photovoltaic power plants in Spain. Equivalent hours between 800-1,800 h year-1 and output power between 100-400 MW have been considered. The profitability analysis has been carried out considering different prices of the electricity produced in the daily market (50-60 € MWh-1). Net Present Value (NPV) and Internal Rate of Return (IRR) were estimated for all scenarios analyzed. A solar PV power plant with 400 MW of power and 1,800 h year-1, reaches a NPV of 196 M€ and the IRR is 11.01%.


2013 ◽  
Vol 380-384 ◽  
pp. 3111-3114
Author(s):  
Yi Shi Shu ◽  
Li Li Ma ◽  
Chao Peng

Large scale photovoltaic generation is another way to generate electricity.When a large capacity PV system connected to the grid,much impact could be brought to the grid due to its uncertainty. In this paper, there are research and analysis about the technology and characteristics of the photovoltaic power plants connected to the grid, make a strong practical impacts.


2015 ◽  
Vol 62 (11) ◽  
pp. 7228-7236 ◽  
Author(s):  
Yifan Yu ◽  
Georgios Konstantinou ◽  
Branislav Hredzak ◽  
Vassilios G. Agelidis

Sign in / Sign up

Export Citation Format

Share Document