ANN Based Fault Detection & Classification in Power System Transmission line

Author(s):  
Md. Rafayel Bishal ◽  
Sabbir Ahmed ◽  
Nur Mohammad Molla ◽  
Kazi Mohammad Mamun ◽  
Asfaqur Rahman ◽  
...  
Author(s):  
KULKARNISAKEKAR SUMANT SUDHIR ◽  
R.P. HASABE

An appropriate method of fault detection and classification of power system transmission line using discrete wavelet transform is proposed in this paper. The detection is carried out by the analysis of the detail coefficients energy of phase currents. Discrete Wavelet Transform (DWT) analysis of the transient disturbance caused as a result of occurrence faults is performed. The work represented in this paper is focused on classification of simple power system faults using the maximum detail coefficient, energy of the signal and the ratio of energy change of each type of simple simulated fault are characteristic in nature and used for distinguishing fault types.


Author(s):  
Hui Hwang Goh ◽  
Sy yi Sim ◽  
Asad Shaykh ◽  
Md. Humayun Kabir ◽  
Chin Wan Ling ◽  
...  

<p>Transmission line is the most important part of the power system.  Transmission lines a principal amount of power. The requirement of power and its allegiance has grown up exponentially over the modern era, and the major role of a transmission line is to transmit electric power from the source area to the distribution network. The exploded between limited production, and a tremendous claim has grown the focus on minimizing power losses. Losses like transmission loss and also conjecture factors as like as physical losses to various technical losses, Another thing is the primary factor it has a reactive power and voltage deviation are momentous in the long-range transmission power line. In essentially, fault analysis is a very focusing issue in power system engineering to clear fault in short time and re-establish power system as quickly as possible on very minimum interruption. However,  the fault detection that interrupts the transmission line is itself challenging task to investigate fault as well as improving the reliability of the system. The transmission line is susceptible given all parameters that connect the whole power system. This paper presents a review of transmission line fault detection.</p>


Author(s):  
Iyappan Murugesan ◽  
Karpagam Sathish

: This paper presents electrical power system comprises many complex and interrelating elements that are susceptible to the disturbance or electrical fault. The faults in electrical power system transmission line (TL) are detected and classified. But, the existing techniques like artificial neural network (ANN) failed to improve the Fault Detection (FD) performance during transmission and distribution. In order to reduce the power loss rate (PLR), Daubechies Wavelet Transform based Gradient Ascent Deep Neural Learning (DWT-GADNL) Technique is introduced for FDin electrical power sub-station. DWT-GADNL Technique comprises three step, normalization, feature extraction and FD through optimization. Initially sample power TL signal is taken. After that in first step, min-max normalization process is carried out to estimate the various rated values of transmission lines. Then in second step, Daubechies Wavelet Transform (DWT) is employed for decomposition of normalized TLsignal to different components for feature extraction with higher accuracy. Finally in third step, Gradient Ascent Deep Neural Learning is an optimization process for detecting the local maximum (i.e., fault) from the extracted values with help of error function and weight value. When maximum error with low weight value is identified, the fault is detected with lesser time consumption. DWT-GADNL Technique is measured with PLR, feature extraction accuracy (FEA), and fault detection time (FDT). The simulation result shows that DWT-GADNL Technique is able to improve the performance of FEA and reduces FDT and PLR during the transmission and distribution when compared to state-of-the-art works.


Sign in / Sign up

Export Citation Format

Share Document