Toward a software product line for affective-driven self-adaptive systems

Author(s):  
Javier Gonzalez-Sanchez
Author(s):  
Mahdi Bashari ◽  
Ebrahim Bagheri ◽  
Weichang Du

Runtime adaptive systems are able to dynamically transform their internal structure, and hence their behavior, in response to internal or external changes. Such transformations provide the basis for new functionalities or improvements of the non-functional properties that match operational requirements and standards. Software Product Line Engineering (SPLE) has introduced several models and mechanisms for variability modeling and management. Dynamic software product lines (DSPL) engineering exploits the knowledge acquired in SPLE to develop systems that can be context-aware, post-deployment reconfigurable, or runtime adaptive. This paper focuses on DSPL engineering approaches for developing runtime adaptive systems and proposes a framework for classifying and comparing these approaches from two distinct perspectives: adaptation properties and adaptation realization. These two perspectives are linked together by a series of guidelines that help to select a suitable adaptation realization approach based on desired adaptation types.


Author(s):  
Hitesh Yadav ◽  
Rita Chhikara ◽  
Charan Kumari

Background: Software Product Line is the group of multiple software systems which share the similar set of features with multiple variants. Feature model is used to capture and organize features used in different multiple organization. Objective: The objective of this research article is to obtain an optimized subset of features which are capable of providing high performance. Methods: In order to achieve the desired objective, two methods have been proposed. a) An improved objective function which is used to compute the contribution of each feature with weight based methodology. b) A hybrid model is employed to optimize the Software Product Line problem. Results: Feature sets varying in size from 100 to 1000 have been used to compute the performance of the Software Product Line. Conclusion: The results shows that proposed hybrid model outperforms the state of art metaheuristic algorithms.


Sign in / Sign up

Export Citation Format

Share Document