Writer identification in a handwritten document image using texture features

Author(s):  
P.S. Hiremath ◽  
S. Shivashankar ◽  
Jagadeesh D. Pujari ◽  
R.K. Kartik
2019 ◽  
Vol 121 ◽  
pp. 97-114 ◽  
Author(s):  
Fahimeh Alaei ◽  
Alireza Alaei ◽  
Umapada Pal ◽  
Michael Blumenstein

Author(s):  
B.V. DHANDRA ◽  
VIJAYALAXMI.M. B ◽  
GURURAJ MUKARAMBI ◽  
MALLIKARJUN. HANGARGE

Writer identification problem is one of the important area of research due to its various applications and is a challenging task. The major research on writer identification is based on handwritten English documents with text independent and dependent. However, there is no significant work on identification of writers based on Kannada document. Hence, in this paper, we propose a text-independent method for off-line writer identification based on Kannada handwritten scripts. By observing each individual’s handwriting as a different texture image, a set of features based on Discrete Cosine Transform, Gabor filtering and gray level co-occurrence matrix, are extracted from preprocessed document image blocks. Experimental results demonstrate that the Gabor energy features are more potential than the DCTs and GLCMs based features for writer identification from 20 people.


2018 ◽  
Vol 71 ◽  
pp. 1-12 ◽  
Author(s):  
Priyanka Singh ◽  
Partha Pratim Roy ◽  
Balasubramanian Raman

2022 ◽  
pp. 811-822
Author(s):  
B.V. Dhandra ◽  
Satishkumar Mallappa ◽  
Gururaj Mukarambi

In this article, the exhaustive experiment is carried out to test the performance of the Segmentation based Fractal Texture Analysis (SFTA) features with nt = 4 pairs, and nt = 8 pairs, geometric features and their combinations. A unified algorithm is designed to identify the scripts of the camera captured bi-lingual document image containing International language English with each one of Hindi, Kannada, Telugu, Malayalam, Bengali, Oriya, Punjabi, and Urdu scripts. The SFTA algorithm decomposes the input image into a set of binary images from which the fractal dimension of the resulting regions are computed in order to describe the segmented texture patterns. This motivates use of the SFTA features as the texture features to identify the scripts of the camera-based document image, which has an effect of non-homogeneous illumination (Resolution). An experiment is carried on eleven scripts each with 1000 sample images of block sizes 128 × 128, 256 × 256, 512 × 512 and 1024 × 1024. It is observed that the block size 512 × 512 gives the maximum accuracy of 86.45% for Gujarathi and English script combination and is the optimal size. The novelty of this article is that unified algorithm is developed for the script identification of bilingual document images.


Sign in / Sign up

Export Citation Format

Share Document