Modeling and identification of electric propulsion system for multirotor unmanned aerial vehicle design

Author(s):  
Grzegorz Szafranski ◽  
Roman Czyba ◽  
Marian Blachuta
Author(s):  
Yiyuan Ma ◽  
Wei Zhang ◽  
Xingyu Zhang ◽  
Xiaobin Zhang ◽  
Yuelong Ma ◽  
...  

Distributed electric propulsion technology brings new ideas to the design of unmanned aerial vehicle(UAV), such as improving aerodynamic efficiency and propulsive efficiency, and new concept of vertical/short takeoff and landing configurations. However, compared with conventional UAV, the propulsion system of distributed electric propulsion UAV is more complex, which brings difficulties and challenges to the design of distributed electric propulsion UAV. Based on its special aerodynamic/propulsive coupling characteristics, this paper studies the design method and process of primary parameters of distributed electric propulsion UAV. A short takeoff and landing UAV with distributed electric propulsion system is taken as an example for the conceptual design and primary parameter design, and the influence of design parameters on the takeoff mass and endurance is analyzed. Finally, the validity of the established design method is verified by the flight test of the prototype. Results indicate that the distributed electric propulsion system accounts for more than 20% of the takeoff mass; the electric ducted fan efficiency, mass specific power of the motor, mass specific power of the electronic speed controller and the resistivity of power wires are the most significant design parameters that affect the performance of the UAV; with the improvement of technologies, the takeoff mass is expected to be reduced by more than 20%, and the endurance is expected to be increased by more than three times.


2009 ◽  
Vol 46 (3) ◽  
pp. 1050-1058 ◽  
Author(s):  
Michael J. Stepaniak ◽  
Frank van Graas ◽  
Maarten Uijt De Haag

Author(s):  
S Wang ◽  
JT Economou ◽  
A Tsourdos

This paper presents a design process for the challenging problem of sizing the engine pack for a distributed series hybrid-electric propulsion system of unmanned aerial vehicle. Sizing the propulsion system for hybrid-electric unmanned aerial vehicles is a demanding problem because of the two different categories of propulsion (the engine and the motor), and the electrical system characteristics. Furthermore, what adds to the difficulty is that the internal combustion engine does not directly drive the propellers, but it is connected to an electrical generator and therefore provides electrical power to the electric motors and propellers. Hence there is a clear distinction from the traditional engine solutions which are mechanically coupled to the propeller. This paper addresses this specific distinction and proposes an indirect solution based on properties on the electrical part of the system. In particular, a novel parametric characterisation engine sizing approach is presented using the battery pack state-of-charge during a realistic unmanned aerial vehicle flight scenario. Five candidate engine options were considered with different starting conditions for the electrical system. The results show that by using the state-of-charge properties it is possible to select an appropriate size of engine pack while carrying a suitable electrical propulsion pack. However, the solutions are not unique and are appropriate for given design criteria clearly indicated in the paper.


Sign in / Sign up

Export Citation Format

Share Document