cmac neural network
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 71 (6) ◽  
pp. 826-835
Author(s):  
G. N. Kumar ◽  
A. K. Sarkar

This paper discusses design and validation of neural network based mid-course guidance law of a surface to air flight vehicle. In present study, initially different optimal trajectories have been generated off-line of different pursuer-evader engagements by ensuring minimum flight time, maximum terminal velocity and favorable handing over conditions for seeker based terminal guidance. These optimal trajectories have been evolved by nonlinear programming based direct method of optimisation. The kinematic information of both pursuer and evader, generated based on these trajectories have been used to train cerebellar model articulate controller (CMAC) neural network. Later for a given engagement scenario an on-line near optimal mid-course guidance law has been evolved based on output of trained network. Training has been carried out by CMAC type supervisory neural network. The tested engagement condition is within input/output training space of neural network. Seeker based homing guidance has been used for terminal phase. Complete methodology has been validated along pitch plane of pursuer-evader engagement. During mid-course phase, the guidance demand has been tracked by attitude hold autopilot and during terminal phase, the guidance demanded lateral acceleration has been tracked by acceleration autopilot. System robustness has been studied in presence of plant parameter variations and sensor noise under Monte Carlo Platform.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Honghui Wang ◽  
Xiaojun Yu ◽  
Shicheng Liang ◽  
Sheng Dong ◽  
Zeming Fan ◽  
...  

This paper proposes a new robust adaptive cerebellar model articulation controller (CMAC) neural network-based multisliding mode control strategy for a class of unmatched uncertain nonlinear systems. Specifically, by employing a stepwise recursion-based multisliding mode method, such a proposed strategy is able to obtain the virtual variables and the actual control inputs of each order first, and then it reduces the conservativeness for controller parameter design by adopting the CMAC neural network to learn both system uncertainties and virtual control variable derivatives of each order online. Meanwhile, with the hyperbolic tangent function being chosen to replace the sign function in the variable structured control components, the proposed strategy is able to avoid the chattering effects caused by the discontinuous inputs. The stability analysis shows that the proposed control strategy ensures that both the system tracking errors and the sliding modes of each order could converge exponentially to any saturated layer being set. The control strategy was also applied onto a passive electrohydraulic servo loading system for verifications, and simulation results show that such a proposed control strategy is robust against all system nonlinearities and external disturbances with much higher control accuracy being achieved.


2020 ◽  
Vol 28 (2) ◽  
pp. 74-87 ◽  
Author(s):  
Zhiwei Kong ◽  
Yong Zhang ◽  
Xudong Wang ◽  
Yueyang Xu ◽  
Baosheng Jin

In this paper, taking desulphurizing ratio and economic cost as two objectives, a ten-input two-output prediction model was structured and validated for desulphurization system. Cerebellar model articulation controller (CMAC) neural network and genetic algorithm (GA) were used for model building and optimization of cost respectively. In the model building process, the grey relation entropy analysis and uniform design method were used to screen the input variables and study the model parameters separately. Traditional regression analysis and proposed location number analysis method were adopted to analyze output errors of experiment group and predict the results of test group. Results show that regression analyses keep high fit degree with experiment group results while the fitting accuracies for test group are quite different. As for location number analysis, a power function between output errors and location numbers was fitted well with the data of experiment group and test group for SO2. Prediction model was initialized by location number analysis method. Model was validated and cost optimization case was performed with GA subsequently. The result shows that the optimal cost obtained from GA could be reduced by more than 30% compared with original optimal operating parameters under same constraints.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Chunyu Nie ◽  
Zewei Zheng ◽  
Ming Zhu

This paper proposed an adaptive three-dimensional (3D) path-following control design for a robotic airship based on reinforcement learning. The airship 3D path-following control is decomposed into the altitude control and the planar path-following control, and the Markov decision process (MDP) models of the control problems are established, in which the scale of the state space is reduced by parameter simplification and coordinate transformation. To ensure the control adaptability without dependence on an accurate airship dynamic model, a Q-Learning algorithm is directly adopted for learning the action policy of actuator commands, and the controller is trained online based on actual motion. A cerebellar model articulation controller (CMAC) neural network is employed for experience generalization to accelerate the training process. Simulation results demonstrate that the proposed controllers can achieve comparable performance to the well-tuned proportion integral differential (PID) controllers and have a more intelligent decision-making ability.


2019 ◽  
Vol 334 ◽  
pp. 227-238 ◽  
Author(s):  
Wubing Fang ◽  
Fei Chao ◽  
Longzhi Yang ◽  
Chih-Min Lin ◽  
Changjing Shang ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Chengcai Fu ◽  
Fengying Ma

Due to the extensive application prospects on wastewater treatment and new energy development, microbial fuel cells (MFCs) have gained more and more attention by many scholars all over the world. The bioelectrochemical reaction in MFC system is highly complex, serious nonlinear and time-delay dynamic process, in which the optimal control of electrochemical parameters is still a considerable challenge. A new optimal control scheme for MFC system which combines proportional integral derivative (PID) controller with parameters fuzzy optional algorithm and cerebellar model articulation controller (CMAC) neural network was proposed. The simulation results demonstrate that the proposed control scheme has rapider response, better control effect and stronger anti-interference ability than Fuzzy PID controller by taking constant voltage output of MFC under the different load disturbances as example.


Sign in / Sign up

Export Citation Format

Share Document