frequency conversion
Recently Published Documents


TOTAL DOCUMENTS

2353
(FIVE YEARS 440)

H-INDEX

60
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Tim van Leent ◽  
Matthias Bock ◽  
Florian Fertig ◽  
Robert Garthoff ◽  
Sebastian Eppelt ◽  
...  

Abstract Heralded entanglement between distant quantum memories is the key resource for quantum networks. Based on quantum repeater protocols, these networks will facilitate efficient large-scale quantum communication and distributed quantum computing. However, despite vast efforts, long-distance fibre based network links have not been realized yet. Here we present results demonstrating heralded entanglement between two independent, remote single-atom quantum memories generated over fibre links with a total length up to 33 km. To overcome the attenuation losses in the long optical fibres of photons initially emitted by the Rubidium quantum memories, we employ polarization-preserving quantum frequency conversion to the low loss telecom band. The presented work represents a milestone towards the realization of efficient quantum network links.


2022 ◽  
Vol 6 (1) ◽  
pp. 7-12
Author(s):  
Yi Gong ◽  
Yang Liu ◽  
Qigao Li

A steel underground pipeline with a diameter of 2.4 m and a total length of 3,617 m (plate thickness of 26 mm) has been constructed in a city in central Hubei, and the engineering, procurement, and construction (EPC) project has been lifted from the upstream channel to supplement water to the downstream lake inside the city. Through preliminary geological survey data, site topographic and geomorphic survey, urban construction, as well as the requirements of the construction party, the preliminary arrangement of working wells and receiving wells as well as the selection and customization of pipe jacking machines have been proposed. Frequency conversion motor and remote monitoring technology are adopted for geotechnical change and long-distance pipe jacking. Through detailed survey, the rock and soil change section as well as gradual change conditions have been determined, the accuracy of construction mechanics calculation and construction operation control have improved, the basis and analysis basis are provided, and some experiences in construction operation are summarized.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 519
Author(s):  
Zhonghuan Su ◽  
Longfu Luo ◽  
Jun Liu ◽  
Zhongxiang Li ◽  
Hu Luo ◽  
...  

Since the transmission distance of submarine cable transmission is inversely proportional to the input frequency, to solve the problem of large losses in the transmission process of offshore wind power, this paper proposes a three-frequency transformer which enables the output of 50 Hz at the input of 50/3 Hz excitation. In this paper, the magnetic flux of a three-dimensional wound core transformer is analytically modeled, the existing condition of magnetic flux harmonics of a three-dimensional wound core transformer is analyzed, the distribution of harmonic content in magnetic flux is obtained, and the principle of realizing frequency conversion is expounded. Secondly, the finite element analysis of the frequency converter is carried out. Finally, a prototype of a frequency transformer is made and tested to verify the correctness of the proposed scheme.


Author(s):  
Timo Stolt ◽  
Mikko J. Huttunen

Abstract Frequency conversion of light can be dramatically enhanced using high quality factor (Q-factor) cavities. Unfortunately, the achievable conversion efficiencies and conversion bandwidths are fundamentally limited by the time–bandwidth limit of the cavity, restricting their use in frequency conversion of ultrashort pulses. Here, we propose and numerically demonstrate sum-frequency generation based frequency conversion using a metasurface-based cavity configuration that could overcome this limitation. The proposed experimental configuration takes use of the spatially dispersive responses of periodic metasurfaces supporting collective surface lattice resonances (SLRs), and can be utilized for broadband frequency conversion of ultrashort pulses. We investigate a plasmonic metasurface, supporting a high-Q SLR (Q=500, linewidth of 2 nm) centred near 1000 nm, and demonstrate ~1000-fold enhancements of nonlinear signals. Furthermore, we demonstrate broadband frequency conversion with a pump conversion bandwidth reaching 75 nm, a value that greatly surpasses the linewidth of the studied cavity. Our work opens new avenues to utilize high-Q metasurfaces also for broadband frequency conversion of light.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Xinhua Wen ◽  
Xinghong Zhu ◽  
Alvin Fan ◽  
Wing Yim Tam ◽  
Jie Zhu ◽  
...  

AbstractSpace−time modulated metamaterials support extraordinary rich applications, such as parametric amplification, frequency conversion, and non-reciprocal transmission. The non-Hermitian space−time varying systems combining non-Hermiticity and space−time varying capability, have been proposed to realize wave control like unidirectional amplification, while its experimental realization still remains a challenge. Here, based on metamaterials with software-defined impulse responses, we experimentally demonstrate non-Hermitian space−time varying metamaterials in which the material gain and loss can be dynamically controlled and balanced in the time domain instead of spatial domain, allowing us to suppress scattering at the incident frequency and to increase the efficiency of frequency conversion at the same time. An additional modulation phase delay between different meta-atoms results in unidirectional amplification in frequency conversion. The realization of non-Hermitian space−time varying metamaterials will offer further opportunities in studying non-Hermitian topological physics in dynamic and nonreciprocal systems.


Author(s):  
Yu Zheng ◽  
Changxiu Yang ◽  
Tiefeng Peng ◽  
Liujian Zhang

Rail transit plays an important role in the social and economic life of China and even all countries in the world, especially some populous countries or regions. The traction drive system of rail vehicle provides three-phase AC with adjustable voltage and frequency for the traction motor, controls the speed and torque of the traction motor, and then controls the operation of the vehicle. The modular multilevel converter has the advantages of low harmonic, good power quality of output waveform, high reliability, no input filtering and power compensation, and is suitable in the field of frequency conversion. In this work, the open-loop scalar control and vector closed-loop control of modular multi-level high-voltage inverter were adopted. It was found that driven by modular multi-level variable frequency vector control system, asynchronous motor not only has less harmonic content of voltage and current waveform, but also its speed regulation characteristics have been improved.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Lei Du ◽  
Yao-Tong Chen ◽  
Yong Li
Keyword(s):  

2021 ◽  
Vol 11 (24) ◽  
pp. 11928
Author(s):  
Xing Jia ◽  
Longhuang Tang ◽  
Shenggang Liu ◽  
Heli Ma ◽  
Tianjiong Tao ◽  
...  

Femtosecond laser-excited generation of frequency-tunable microwave pulses, based on an unbalanced single-arm interferometer with frequency-to-time mapping, has been proposed and demonstrated with easy-to-obtain commercial devices. The optical wave-to-microwave frequency conversion, which involves continuous tuning in the range from 2.0 GHz to 19.7 GHz, was achieved based on simple spatial–optical group delay adjustment. Additionally, the pulse duration of the microwave waveform was measured to be 24 ns as the length of the linear dispersion optical fiber was fixed at 20 km. In addition, owing to the designs of the single-arm optical path and polarization-independent interference, the generated microwave pulse train had better stability in terms of frequency and electrical amplitude. Furthermore, a near-triangular-shaped microwave pulse at 4.5 GHz was experimentally obtained by the superposition of two generated sinusoidal signals, which verified the potential of this system to synthesize special microwave waveform pulses.


Sign in / Sign up

Export Citation Format

Share Document