Fault diagnosis method integrated on scale-wavelet power spectrum, rough set and neural network

Author(s):  
Bao-Jia Chen ◽  
Li Li ◽  
Xin-Ze Zhao
2020 ◽  
Vol 26 (9-10) ◽  
pp. 629-642
Author(s):  
Zhihao Jin ◽  
Qicheng Han ◽  
Kai Zhang ◽  
Yimin Zhang

In the intelligent fault diagnosis of rolling bearings, the high recognition accuracy is hardly achieved when small training samples and strong noise happen. In this article, a novel fault diagnosis method is proposed, that is radial basis function neural network with power spectrum of Welch method. This fault diagnosis model adopts the way of end-to-end operating mode. It takes the original vibration signal (time-domain signal) as input, and Welch method transforms the data from time-domain signals to power spectrums and suppresses high strength noise. Then the results of Welch method are classified by radial basis function neural network. To test the performance of radial basis function neural network with power spectrum of Welch method, the method is compared with some advanced fault diagnosis methods, and the limit performance test for radial basis function neural network with power spectrum of Welch method is carried out to obtain its ultimate diagnosis ability. The results show that the proposed method can realize the high diagnostic precision without the complex feature extraction from the signal. At the same time, in the case of a small amount of training data, this method also can achieve the diagnosis in high precision. Moreover, the anti-noise performance of radial basis function neural network with power spectrum of Welch method is better than the performance of some fault diagnosis methods proposed in recent years.


Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Sign in / Sign up

Export Citation Format

Share Document