Reactive power capability of the wind turbine with Doubly Fed Induction Generator

Author(s):  
J. Tian ◽  
C. Su ◽  
Z. Chen
Wind Energy ◽  
2007 ◽  
Vol 10 (4) ◽  
pp. 379-394 ◽  
Author(s):  
Torsten Lund ◽  
Poul Sørensen ◽  
Jarle Eek

2017 ◽  
Vol 7 (2) ◽  
pp. 77-91
Author(s):  
Merabet Leila ◽  
Mekki Mounira ◽  
Ourici Amel ◽  
Saad Salah

This paper describes the modelling and control system of a wind turbine, using a doubly fed induction generator. This configuration makes the wind turbine suitable for variable speed wind energy application. The power captured by the wind turbine is converted into electrical power by the induction generator, and it is transmitted to the grid by the stator and the rotor windings. The control system generates voltage command signals for rotor converter and grid converter, respectively, in order to control the power of the wind turbine. Reactive power exchanged with the network through the converters is set to 0 VAr. The control strategy has been developed using MATLAB/Simulink. The simulation results are presented and discussed in the conclusions. Keywords: Wind energy, doubly fed induction generator, grid power, modelling, control.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
N. Boumalha ◽  
R. Hachelef ◽  
D. Kouchih ◽  
M. Tadjine ◽  
M.S. Boucherit

This paper describes a Fault Tolerant Control (FTC) of a doubly-fed induction generator (DFIG) based wind turbine model suitable for the simulation of this generator in the mode faulty mode. The dynamic model of a DFIG with stator inter-turn short circuit fault is proposed. A model (abc) is developed, which can represent both the healthy and faulty conditions. The DFIG is directly connected to the grid whereas the rotor winding is fed by back-to-back PWM converters .the Control schemes for active and reactive power regulation are designed firstly. Under different wind speed, maximum power point tracing (MPPT) control is implemented to ensure the optimum active power output. The numerical simulation developed in Matlab/Simulink studies the effects of stator inter-turn short-circuit in the DFIG. Afterward, the application of Approach technique of Adaptive Obs


2019 ◽  
Vol 8 (2) ◽  
pp. 367-374
Author(s):  
Ameerul A. J. Jeman ◽  
Naeem M. S. Hannoon ◽  
Nabil Hidayat ◽  
Mohamed M. H. Adam ◽  
Ismail Musirin ◽  
...  

As of late, expanding interest of renewable energy and consumption of non-renewable energy source have prompted developing advancement of renewable energy technology, for example, wind energy. Wind energy has turned out to be one of the reliable sources of renewable energy, which requests extra transmission capacity and better methods for sustaining system reliability. As of now, doubly fed induction generator wind turbine is the most well-known wind turbine. This paper focuses on DFIG wind farm design using MATLAB/SIMULINK and also investigates the issues of the system stability of the DFIG wind turbine micro grid power system. This analysis includes the changes of voltage, current, real power and reactive power based on various conditions of the power system.


2019 ◽  
Vol 16 (2) ◽  
pp. 778-785
Author(s):  
Naeem M. S. Hannoon ◽  
V. Vijayakumar ◽  
K. Vengatesan ◽  
Nabil Hidayat

As of late, expanding interest of renewable energy and consumption of non-renewable energy source have prompted developing advancement of renewable energy technology, for example, wind energy. Wind energy has turned out to be one of the reliable sources of renewable energy, which requests extra transmission capacity and better methods for sustaining system reliability. As of now, doubly fed induction generator wind turbine is the most well-known wind turbine. This paper focuses on DFIG wind farm design using MATLAB/SIMULINK and also investigates the issues of the system stability of the DFIG wind turbine micro grid power system. This analysis includes the changes of voltage, current, real power and reactive power based on various conditions of the power system.


Author(s):  
Jawaharlal Bhukya ◽  
Vasundhara Mahajan

Abstract Stator Flux Orientation Control Scheme (SFOCS) has limitations that its performance is mainly influenced by the tuning of parameters, the Proportional-Integral (PI) controller could not compensate system variations very efficiently. To overcome the drawbacks of PI controller the Fuzzy Logic Controllers (FLCs) are modelled. This paper presents the fuzzy logic based control strategy for the variable speed wind turbine generator by using Doubly Fed Induction Generator (DFIG). The mathematical model for DFIG is developed in synchronous reference frame by using SFOCS for current and voltage control and is discretized in time domain. Based on this model the artificial intelligence based FLCs are designed and implemented so as to improve the performance and efficiency of the system. This control scheme not only enhances the dynamic performance but also maintains almost unity power factor to the grid. In order to explore the robustness of the FLC and conventional PI controller, simulations are carried out for rapid variation of wind speed, and different disturbances generated in the system. The simulation results show that the proposed fuzzy logic based control strategies have better power control, faster oscillation damping, more accurate regulation, considerably reduced settling time and has fewer ripples in comparison with conventional PI controller. In the proposed SFOCS, the PI controllers are replaced with FLCs, to improve the performance and efficiency of the system. The system performance is analyzed for real and reactive power control in SFOCS for the effectiveness of synchronization with the grid.


Sign in / Sign up

Export Citation Format

Share Document