Design of Trajectory Generator of a Glass Façade Cleaning Robot

Author(s):  
Kouki Kanbe ◽  
Shunsuke Nansai ◽  
Hiroshi Itoh
2018 ◽  
Vol 8 (12) ◽  
pp. 2398 ◽  
Author(s):  
Shunsuke Nansai ◽  
Keichi Onodera ◽  
Prabakaran Veerajagadheswar ◽  
Mohan Rajesh Elara ◽  
Masami Iwase

Façade cleaning in high-rise buildings has always been considered a hazardous task when carried out by labor forces. Even though numerous studies have focused on the development of glass façade cleaning systems, the available technologies in this domain are limited and their performances are broadly affected by the frames that connect the glass panels. These frames generally act as a barrier for the glass façade cleaning robots to cross over from one glass panel to another, which leads to a performance degradation in terms of area coverage. We present a new class of façade cleaning robot with a biped mechanism that is able overcome these obstacles to maximize its area coverage. The developed robot uses active suction cups to adhere to glass walls and adopts mechanical linkage to navigate the glass surface to perform cleaning. This research addresses the design challenges in realizing the developed robot. Its control system consists of inverse kinematics, a fifth polynomial interpolation, and sequential control. Experiments were conducted in a real scenario, and the results indicate that the developed robot achieves significantly higher coverage performance by overcoming both negative and positive obstacles in a glass panel.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1483 ◽  
Author(s):  
Manuel Vega-Heredia ◽  
Ilyas Muhammad ◽  
Sriharsha Ghanta ◽  
Vengadesh Ayyalusami ◽  
Siti Aisyah ◽  
...  

Glass-façade-cleaning robots are an emerging class of service robots. This kind of cleaning robot is designed to operate on vertical surfaces, for which tracking the position and orientation becomes more challenging. In this article, we have presented a glass-façade-cleaning robot, Mantis v2, who can shift from one window panel to another like any other in the market. Due to the complexity of the panel shifting, we proposed and evaluated different methods for estimating its orientation using different kinds of sensors working together on the Robot Operating System (ROS). For this application, we used an onboard Inertial Measurement Unit (IMU), wheel encoders, a beacon-based system, Time-of-Flight (ToF) range sensors, and an external vision sensor (camera) for angular position estimation of the Mantis v2 robot. The external camera is used to monitor the robot’s operation and to track the coordinates of two colored markers attached along the longitudinal axis of the robot to estimate its orientation angle. ToF lidar sensors are attached on both sides of the robot to detect the window frame. ToF sensors are used for calculating the distance to the window frame; differences between beam readings are used to calculate the orientation angle of the robot. Differential drive wheel encoder data are used to estimate the robot’s heading angle on a 2D façade surface. An integrated heading angle estimation is also provided by using simple fusion techniques, i.e., a complementary filter (CF) and 1D Kalman filter (KF) utilizing the IMU sensor’s raw data. The heading angle information provided by different sensory systems is then evaluated in static and dynamic tests against an off-the-shelf attitude and heading reference system (AHRS). It is observed that ToF sensors work effectively from 0 to 30 degrees, beacons have a delay up to five seconds, and the odometry error increases according to the navigation distance due to slippage and/or sliding on the glass. Among all tested orientation sensors and methods, the vision sensor scheme proved to be better, with an orientation angle error of less than 0.8 degrees for this application. The experimental results demonstrate the efficacy of our proposed techniques in this orientation tracking, which has never applied in this specific application of cleaning robots.


2018 ◽  
Vol 96 ◽  
pp. 180-188 ◽  
Author(s):  
Thein Than Tun ◽  
Mohan Rajesh Elara ◽  
Manivannan Kalimuthu ◽  
Ayyalusami Vengadesh

Inventions ◽  
2017 ◽  
Vol 2 (3) ◽  
pp. 18 ◽  
Author(s):  
Shunsuke Nansai ◽  
Mohan Elara ◽  
Thein Tun ◽  
Prabakaran Veerajagadheswar ◽  
Thejus Pathmakumar

Sign in / Sign up

Export Citation Format

Share Document