Optimal Design of LVAC Distribution System Topology for a Rural Village

Author(s):  
Vannak Vai ◽  
Soklen Sim ◽  
Rathana Lorm ◽  
Sievlong Suk ◽  
Samphors Eng ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 553 ◽  
Author(s):  
Young Choi ◽  
Joong Kim

This study proposes a multi-objective optimal design approach for water distribution systems, considering mechanical system redundancy under multiple pipe failure. Mechanical redundancy is applied to the system’s hydraulic ability, based on the pressure deficit between the pressure requirements under abnormal conditions. The developed design approach shows the relationships between multiple pipe failure states and system redundancy, for different numbers of pipe-failure conditions (e.g., first, second, third, …, tenth). Furthermore, to consider extreme demand modeling, the threshold of the demand quantity is investigated simultaneously with multiple pipe failure modeling. The design performance is evaluated using the mechanical redundancy deficit under extreme demand conditions. To verify the proposed design approach, an expanded version of the well-known benchmark network is used, configured as an ideal grid-shape, and the multi-objective harmony search algorithm is used as the optimal design approach, considering construction cost and system mechanical redundancy. This optimal design technique could be used to propose a standard for pipe failure, based on factors such as the number of broken pipes, during failure condition analysis for redundancy-based designs of water distribution systems.


2010 ◽  
Vol 19 (01) ◽  
pp. 45-58 ◽  
Author(s):  
SAJAD NAJAFI RAVADANEGH ◽  
ARASH VAHIDNIA ◽  
HOJAT HATAMI

Optimal planning of large-scale distribution networks is a multiobjective combinatorial optimization problem with many complexities. This paper proposes the application of improved genetic algorithm (GA) for the optimal design of large-scale distribution systems in order to provide optimal sizing and locating of the high voltage (HV) substations and medium voltage (MV) feeders routing, using their corresponding fixed and variable costs associated with operational and optimization constraints. The novel approach presented in the paper, solves hard satisfactory optimization problems with different constraints in large-scale distribution networks. This paper presents a new concept based on MST in graph theory and GA for optimal locating of the HV substations and MV feeders routing in a real-size distribution network. Minimum spanning tree solved with Prim's algorithm is employed to generate a set of feasible population. In the present article, to reduce computational burden and avoid huge search space leading to infeasible solutions, special coding method is generated for GA operators to solve optimal feeders routing. The proposed coding method guarantees the validity of the solution during the progress of the GA toward the global optimal solution. The developed GA-based software is tested in a real-size large-scale distribution system and the well-satisfactory results are presented.


Sign in / Sign up

Export Citation Format

Share Document