ON OPTIMAL DESIGN AND EXPANSION OF ELECTRICAL POWER DISTRIBUTION SYSTEMS

2010 ◽  
Vol 19 (01) ◽  
pp. 45-58 ◽  
Author(s):  
SAJAD NAJAFI RAVADANEGH ◽  
ARASH VAHIDNIA ◽  
HOJAT HATAMI

Optimal planning of large-scale distribution networks is a multiobjective combinatorial optimization problem with many complexities. This paper proposes the application of improved genetic algorithm (GA) for the optimal design of large-scale distribution systems in order to provide optimal sizing and locating of the high voltage (HV) substations and medium voltage (MV) feeders routing, using their corresponding fixed and variable costs associated with operational and optimization constraints. The novel approach presented in the paper, solves hard satisfactory optimization problems with different constraints in large-scale distribution networks. This paper presents a new concept based on MST in graph theory and GA for optimal locating of the HV substations and MV feeders routing in a real-size distribution network. Minimum spanning tree solved with Prim's algorithm is employed to generate a set of feasible population. In the present article, to reduce computational burden and avoid huge search space leading to infeasible solutions, special coding method is generated for GA operators to solve optimal feeders routing. The proposed coding method guarantees the validity of the solution during the progress of the GA toward the global optimal solution. The developed GA-based software is tested in a real-size large-scale distribution system and the well-satisfactory results are presented.

2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Tung Tran The ◽  
Sy Nguyen Quoc ◽  
Dieu Vo Ngoc

This paper proposes the Symbiotic Organism Search (SOS) algorithm to find the optimal network configuration and the placement of distributed generation (DG) units that minimize the real power loss in radial distribution networks. The proposed algorithm simulates symbiotic relationships such as mutualism, commensalism, and parasitism for solving the optimization problems. In the optimization process, the reconfiguration problem produces a large number of infeasible network configurations. To reduce these infeasible individuals and ensure the radial topology of the network, the graph theory was applied during the power flow. The implementation of the proposed SOS algorithm was carried out on 33-bus, 69-bus, 84-bus, and 119-bus distribution networks considering seven different scenarios. Simulation results and performance comparison with other optimization methods showed that the SOS-based approach was very effective in solving the network reconfiguration and DG placement problems, especially for complex and large-scale distribution networks.


2019 ◽  
Vol 9 (3) ◽  
pp. 582 ◽  
Author(s):  
Hasan Gelani ◽  
Faizan Dastgeer ◽  
Kiran Siraj ◽  
Mashood Nasir ◽  
Kamran Niazi ◽  
...  

The paper investigates the system efficiency for power distribution in residential localities considering daily load variations. Relevant system modeling is presented. A mathematical model is devised, which is based on the data from the Energy Information Administration (EIA), USA, for analysis. The results reveal that the DC distribution system can present an equivalent or even better efficiency compared to the AC distribution network with an efficiency advantage of 2.3%, averaged over a day. Furthermore, the distribution systems are compared under various capacities of solar PV accounting for the effect of variation in solar irradiation over time.


Author(s):  
Reza Tajik

Nowadays, the utilization of renewable energy resources in distribution systems (DSs) has been rapidly increased. Since distribution generation (DG) use renewable resources (i.e., biomass, wind and solar) are emerging as proper solutions for electricity generation. Regarding the tremendous deployment of DG, common distribution networks are undergoing a transition to DSs, and the common planning methods have become traditional in the high penetration level. Indeed, in conformity with the voltage violation challenge of these resources, this problem must be dealt with too. So, due to the high penetration of DG resources and nonlinear nature of most industrial loads, the planning of DG installation has become an important issue in power systems. The goal of this paper is to determine the planning of DG in distribution systems through smart grid to minimize losses and control grid factors. In this regard, the present work intending to propose a suitable method for the planning of DSs, the key properties of DS planning problem are evaluated from the various aspects, such as the allocation of DGs, and planning, and high-level uncertainties. Also depending on these analyses, this universal literature review addressed the updated study associated with DS planning. In this work, an operational design has been prepared for a higher performance of the power distribution system in the presence of DG. Artificial neural network (ANN) has been used as a method for voltage monitoring and generation output optimization. The findings of the study show that the proposed method can be utilized as a technique to improve the process of the distribution system under various penetration levels and in the presence of DG. Also, the findings revealed that the optimal use of ANN method leads to more controllable and apparent DS.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1858 ◽  
Author(s):  
Fatma Yaprakdal ◽  
Mustafa Baysal ◽  
Amjad Anvari-Moghaddam

Passive distribution networks are being converted into active ones by incorporating distributed means of energy generation, consumption, and storage, and the formation of so-called microgrids (MGs). As the next generation of MGs, reconfigurable microgrids (RMGs) are still in early phase studies, and require further research. RMGs facilitate the integration of distributed generators (DGs) into distribution systems and enable a reconfigurable network topology by the help of remote-controlled switches (RCSs). This paper proposes a day-ahead operational scheduling framework for RMGs by simultaneously making an optimal reconfiguration plan and dispatching controllable distributed generation units (DGUs) considering power loss minimization as an objective. A hybrid approach combining conventional particle swarm optimization (PSO) and selective PSO (SPSO) methods (PSO&SPSO) is suggested for solving this combinatorial, non-linear, and NP-hard complex optimization problem. PSO-based methods are primarily considered here for our optimization problem, since they are efficient for power system optimization problems, easy to code, have a faster convergence rate, and have a substructure that is suitable for parallel calculation rather than other optimization methods. In order to evaluate the suggested method’s performance, it is applied to an IEEE 33-bus radial distribution system that is considered as an RMG. One-hour resolution of the simultaneous network reconfiguration (NR) and the optimal dispatch (OD) of distributed DGs are carried out prior to this main study in order to validate the effectiveness and superiority of the proposed approach by comparing relevant recent studies in the literature.


Author(s):  
Yanu Prapto Sudarmojo

World energy requirement increased significantly, the main energy source from an oil is very limited. This problem drive an enhancement develop which support small scale generator to be connected near distributed network or near load center. Distributed Generator (DG) is a power plant which have a little capacity range between 15 kW to 10 MW. Basically, DG instalation is one way to fix a voltage profile where an installed DG would inject voltage to a transmission system or electric power distribution. Bali is a tourism area which it’s electric power source got a supply from Java and some large scale plant which use fuel of oil and gas, which until now still needed more of electric energy. An addition small scale generator for Bali is very helpful where economic profit is distribution cost and transmission cost’s reduction, electric cost and saving fuel energy. Technically a distributor of DG must be done correctly and optimal from it’s size or location so that give a maximum result from economic side, minimalizing electricity loss and increase voltage profile which result an electric power quality is improved. For that, in this research will use heuristic optimation with use Quantum Genetic Alghorithm method to placing distributed generator to Bali Electricity Network. To counting electicity loss and voltage profile, a method which used to solve it is Newton Raphson method. The result of this research, DG is installed to feeder which plaed in Abang Sub-District, Karangasem District where Abang Feeder had a total 43a bus which is a part from Bali Distribution System. With using QGA, DG is installed to bus 1, 5, 7, and 302 with each DG capacity is 0,374 MW, 1,894 MW, 1,988 MW and 0,500 MW, after installment of DG, voltage profile can be fixed. Voltage profile for some bus to Abang Feeder could be fixed from 0,83 pu to 0,98 pu. Electricity loss from 1,105 MW become 0,234 MW.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3780 ◽  
Author(s):  
Jinrui Tang ◽  
Binyu Xiong ◽  
Chen Yang ◽  
Cuilan Tang ◽  
Yang Li ◽  
...  

The main shortcomings of the software-based power engineering education are a lack of physical understanding of phenomena and hands-on experience. Existing scaled-down analogous educational power system platforms cannot be widely used for experiments in universities due to the high cost, complicated operation, and huge size. An integrated power distribution system laboratory platform (PDSLP) using modular miniature physical elements is proposed in this paper. The printed circuit board (PCB) and microelectronic technology are proposed to construct each physical element. Furthermore, the constructed physical elements are used to set up an integrated PDSLP based on modular assembly technology. The size of the proposed cost-efficient PDSLP is significantly reduced, and the reliability of the proposed PDSLP can be improved greatly because the signal transmission path is shortened and a number of welding points are reduced. A PDSLP for fault location in neutral non-effectively grounded distribution systems (NGDSs) is selected as a typical experimental scenario and one scaled-down distribution network with three feeders is subsequently implemented and discussed. The measured zero-sequence currents by our proposed PDSLP when a single-phase earth fault occurred can reveal the true features of the fault-generated signals, including steady-state and transient characteristics of zero-sequence currents. They can be readily observed and used for students to design corresponding fault location algorithms. Modular renewable energy sources and other elements can be designed, implemented and integrated into the proposed platform for the laboratory education of the active distribution networks in the future.


Author(s):  
Sadeeb Simon Ottenburger

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures whereby the way in which a distribution network is divided into interconnected microgrids is of particular importance. Such decompositions enable the systematic protection of important infrastructures and furthermore allow new forms of resilient power supply avoiding large-scale power blackouts. Therefore, the authors introduce a concept of criticality adapted to a power system relying on an advanced metering infrastructure and thereby propose a metric for an integrated resilience assessment of power distribution networks.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1960 ◽  
Author(s):  
Majid Ghaffarianfar ◽  
Amin Hajizadeh

Voltage stability analysis of power distribution systems with high photovoltaic (PV) penetration is a challenging problem due to the stochastic generation of a solar power system. Voltage stability is an important benchmark for defining PV’s penetration level in active distribution networks considering loading capacity. The massive integration of PV power units, the effect of distribution system characteristics, like high ratio of R/X, and the reported collapses in power networks come up in serious studies that investigate their impact and upcoming problems on distribution networks. Therefore, this paper proposes analytical voltage stability and it is implemented on IEEE 34 nodes radial distribution systems with 24.9 kV and 4.16 kV voltage levels. In this regard, in addition to given properties in stability and power loss analysis, a penetration coefficient for PVs is considered. Simulation results prove that the applied method can illustrate the positive and negative effects of PV in distribution networks.


Author(s):  
Ihsan Salman ◽  
Khalid Mohammed ◽  
Khalid Shaker ◽  
Hothefa Shaker

The environment friendly designing and running of electricity distribution structures are becoming vaster with the conjunction of renewable electricity options into power distribution systems. This study presents Moth Flame Optimization (MFO) approach to minimize total losses kW and energy cost and maximize net savings with solving the voltage deviation problem through optimal site and size of capacitor banks in electrical radial distribution networks. Two various load profiles are utilized to take a look at the modified algorithm on IEEE 123-, and 13-bus check networks. The OpenDSS software is utilized to resolve the power flowing via MATLAB programming interface. The results obtained are compared with IEEE normal state and other two heuristic approaches in same study, namely, imperialist competitive algorithm and particle swarm optimization. The proposed algorithm is more effective to minimise the total power losses and total cost and maximise net savings and to enhance the voltage profile for various distribution systems.


Author(s):  
Lazhar Bougouffa ◽  
Abdelaziz Chaghi

<p>The use of Distributed Renewable Energy Sources in the electrical network has expanded greatly. But, integration of these resources into distribution systems caused more problems in protection related issues such as mis-coordination, and changes the direction and value of fault currents. When connecting new D-RES to electrical power distribution networks, it is required to re-coordinate Directional Over-CurrentRelays (DOC-Relays) to ensure the continuity of the power transmission when the short circuits take place. This work presented a Particle Swarm Optimization (PSO) algorithm to determine two independent variables called Pickup current (Ip) and Time Dial Setting (TDS) for optimal setting of relays. From analysis result, the impacts of RES location in the distribution system on DOCRs had been observed on the optimal relays settings</p>


Sign in / Sign up

Export Citation Format

Share Document