Time-course analysis of motor unit firing patterns in stroke patients using noninvasive multielectrode electromyography

Author(s):  
Tzyh-Yi Sun ◽  
Jia-jin Chen ◽  
Thy-Sheng Lin
2018 ◽  
Vol 124 (6) ◽  
pp. 1438-1446 ◽  
Author(s):  
Yi-Ling Peng ◽  
Matthew S. Tenan ◽  
Lisa Griffin

Weakness of the vastus medialis oblique (VMO) has been proposed to explain the high prevalence of knee pain in female subjects. Clinicians commonly use exercises in an attempt to preferentially activate the VMO. Recently, our group found evidence to support clinical theory that the VMO is neurologically distinct from the vastus medialis (VM). However, the ability to voluntarily activate these muscle subsections is still disputed. The aim of this study was to determine if VM and VMO activation varies between sexes and if control of the two muscles is different between rehabilitation exercises. Thirteen men and 13 women performed isometric straight leg raises in two hip positions, neutral hip rotation and 30 degrees lateral hip rotation. Bipolar intramuscular fine-wire electrodes were inserted into the VM and VMO to obtain motor unit recruitment thresholds and initial firing rates at recruitment. Linear mixed models and Tukey post hoc tests were used to assess significant differences in 654 motor units. Women demonstrated faster motor unit firing rate at recruitment, 1.18 ± 0.56 Hz higher than men. Motor units fired 0.47 ± 0.19 Hz faster during neutral hip rotation compared with lateral hip rotation. The VMO motor units were recruited 2.92 ± 1.28% earlier than the VM. All motor units were recruited 3.74 ± 1.27% earlier during neutral hip rotation than lateral hip rotation. Thus the VM and the VMO can be activated differentially, and their motor unit recruitment properties are affected by sex and hip position. NEW & NOTEWORTHY This is the first study to reveal differential activation of the vastus medialis oblique from the vastus medialis in clinical exercise protocols. Our research group used fine-wire electrodes to examine EMG signals of the vastus medialis oblique and vastus medialis to avoid possible cross talk. We also consider the effect of sex on motor unit firing patterns because of higher prevalence of knee pain in women, and yet few studies evaluating the sex differences in neuromuscular control.


Author(s):  
Shun Kunugi ◽  
Ales Holobar ◽  
Tsutomu Kodera ◽  
Heishiro Toyoda ◽  
Kohei Watanabe

Different neurophysiological strategies are used to perform angle adjustments during motor tasks such as car driving and force-control tasks using a fixed-rigid pedal. However, the difference in motor unit behavior in response to an increasing exerted force between tasks is unknown. This study aimed to investigate the difference in motor unit responsiveness on increasing force between force and position tasks. Twelve healthy participants performed ramp and hold contractions during ankle plantarflexion at 20 and 30% of the maximal voluntary contraction using a rigid pedal (force task) and a free pedal with an inertial load (position task). High-density surface electromyograms were recorded of the medial gastrocnemius muscle and decomposed into individual motor unit firing patterns. Ninety and 109 motor units could be tracked between different target torques in each task. The mean firing rate increased and firing rate variability decreased on 10% maximal voluntary contraction force gain during both force and position tasks. There were no significant differences in these responses between the two tasks. Our results suggest that the motor unit firing rate is similarly regulated between force and position tasks in the medial gastrocnemius muscle with an increase in the exerted force.


2010 ◽  
pp. 28-30 ◽  
Author(s):  
Constantinos Christakos ◽  
Sophia Erimaki ◽  
Evangelos Anagnostou ◽  
Dimitri Anastasopoulos

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Gregory E. Pearcey ◽  
Obaid Ul Haq Khurram ◽  
Edward H. Kim ◽  
Sai Voora ◽  
Christopher K. Thompson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document