Accuracy of a semi-automatic technique for segmentation of the carotid arteries from 3D ultrasound images

Author(s):  
J.D. Gill ◽  
H. Ladak ◽  
D.A. Steinman ◽  
A. Fenster
2008 ◽  
Author(s):  
Bernard Chiu ◽  
Micaela Egger ◽  
J. David Spence ◽  
Grace Parraga ◽  
Aaron Fenster

2021 ◽  
Vol 6 (7) ◽  
pp. 107-113
Author(s):  
Charles Nnamdi Udekwe ◽  
Akinlolu Adediran Ponnle

The geometry of the imaged transverse cross-section of carotid arteries in in-vivo B-mode ultrasound images are most times irregular, unsymmetrical, full of speckles and usually non-uniform. We had earlier developed a technique of cardinal point symmetry landmark distribution model (CPS-LDM) to completely characterize the Region of Interest (ROI) of the geometric shape of thick-walled simulated B-mode ultrasound images of carotid artery imaged in the transverse plane, but this was based on the symmetric property of the image. In this paper, this developed technique was applied to completely characterize the region of interest of the geometric shape of in-vivo B-mode ultrasound images of non-uniform carotid artery imaged in the transverse plane. In order to adapt the CPS-LD Model to the in-vivo carotid artery images, the single VS-VS vertical symmetry line common to the four ROIs of the symmetric image is replaced with each ROI having its own VS-VS vertical symmetry line. This adjustment enables the in-vivo carotid artery images possess symmetric properties, hence, ensuring that all mathematical operations of the CPS-LD Model are conveniently applied to them. This adaptability was observed to work well in segmenting the in-vivo carotid artery images. This paper shows the adaptive ability of the developed CPS-LD Model to successfully annotate and segment in-vivo B-mode ultrasound images of carotid arteries in the transverse cross-sectional plane either they are symmetrical or unsymmetrical.


2020 ◽  
Author(s):  
Rachana Jaiswal ◽  
Srikant Satarkar

In medical imaging, accurate anatomical structure extraction is important for diagnosis and therapeutic interventional planning. So, for easier, quicker and accurate diagnosis of medical images, image processing technologies may be employed in analysis and feature extraction of medical images. In this paper, some modifications to level set algorithm are made and modified algorithm is used for extracting contour of foetal objects in an image. The proposed approach is applied on foetal ultrasound images. In traditional approach, foetal parameters are extracted manually from ultrasound images. Due to lack of consistency and accuracy of manual measurements, an automatic technique is highly desirable to obtain foetal biometric measurements. This proposed approach is based on global & local region information for foetal contour extraction from ultrasonic images. The primary goal of this research is to provide a new methodology to aid the analysis and feature extraction from foetal images.


Sign in / Sign up

Export Citation Format

Share Document