3d segmentation
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 100)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 15 ◽  
Author(s):  
Meera Srikrishna ◽  
Rolf A. Heckemann ◽  
Joana B. Pereira ◽  
Giovanni Volpe ◽  
Anna Zettergren ◽  
...  

Brain tissue segmentation plays a crucial role in feature extraction, volumetric quantification, and morphometric analysis of brain scans. For the assessment of brain structure and integrity, CT is a non-invasive, cheaper, faster, and more widely available modality than MRI. However, the clinical application of CT is mostly limited to the visual assessment of brain integrity and exclusion of copathologies. We have previously developed two-dimensional (2D) deep learning-based segmentation networks that successfully classified brain tissue in head CT. Recently, deep learning-based MRI segmentation models successfully use patch-based three-dimensional (3D) segmentation networks. In this study, we aimed to develop patch-based 3D segmentation networks for CT brain tissue classification. Furthermore, we aimed to compare the performance of 2D- and 3D-based segmentation networks to perform brain tissue classification in anisotropic CT scans. For this purpose, we developed 2D and 3D U-Net-based deep learning models that were trained and validated on MR-derived segmentations from scans of 744 participants of the Gothenburg H70 Cohort with both CT and T1-weighted MRI scans acquired timely close to each other. Segmentation performance of both 2D and 3D models was evaluated on 234 unseen datasets using measures of distance, spatial similarity, and tissue volume. Single-task slice-wise processed 2D U-Nets performed better than multitask patch-based 3D U-Nets in CT brain tissue classification. These findings provide support to the use of 2D U-Nets to segment brain tissue in one-dimensional (1D) CT. This could increase the application of CT to detect brain abnormalities in clinical settings.


2022 ◽  
Vol 3 ◽  
Author(s):  
Rocco D’Antuono ◽  
Giuseppina Pisignano

Bioimage analysis workflows allow the measurement of sample properties such as fluorescence intensity and polarization, cell number, and vesicles distribution, but often require the integration of multiple software tools. Furthermore, it is increasingly appreciated that to overcome the limitations of the 2D-view-based image analysis approaches and to correctly understand and interpret biological processes, a 3D segmentation of microscopy data sets becomes imperative. Despite the availability of numerous algorithms for the 2D and 3D segmentation, the latter still offers some challenges for the end-users, who often do not have either an extensive knowledge of the existing software or coding skills to link the output of multiple tools. While several commercial packages are available on the market, fewer are the open-source solutions able to execute a complete 3D analysis workflow. Here we present ZELDA, a new napari plugin that easily integrates the cutting-edge solutions offered by python ecosystem, such as scikit-image for image segmentation, matplotlib for data visualization, and napari multi-dimensional image viewer for 3D rendering. This plugin aims to provide interactive and zero-scripting customizable workflows for cell segmentation, vesicles counting, parent-child relation between objects, signal quantification, and results presentation; all included in the same open-source napari viewer, and “few clicks away”.


2021 ◽  
Author(s):  
Bahareh Shakibajahromi ◽  
Saeed Shayestehmanesh ◽  
Daniel Schwartz ◽  
Ali Shokoufandeh
Keyword(s):  

2021 ◽  
Author(s):  
Nirmal Das ◽  
Ewa Baczynska ◽  
Monika Bijata ◽  
Blazej Ruszczycki ◽  
Andre Zeug ◽  
...  

2021 ◽  
Author(s):  
Peter Somers ◽  
Johannes Schule ◽  
Cristina Tarin ◽  
Oliver Sawodny

2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Matthew J. Lawson ◽  
Orestis L. Katsamenis ◽  
David Chatelet ◽  
Aiman Alzetani ◽  
Oliver Larkin ◽  
...  

Micro-computed tomography (µCT) provides non-destructive three-dimensional (3D) imaging of soft tissue microstructures. Specific features in µCT images can be identified using correlated two-dimensional (2D) histology images allowing manual segmentation. However, this is very time-consuming and requires specialist knowledge of the tissue and imaging modalities involved. Using a custom-designed µCT system optimized for imaging unstained formalin-fixed paraffin-embedded soft tissues, we imaged human lung tissue at isotropic voxel sizes less than 10 µm. Tissue sections were stained with haematoxylin and eosin or cytokeratin 18 in columnar airway epithelial cells using immunofluorescence (IF), as an exemplar of this workflow. Novel utilization of tissue autofluorescence allowed automatic alignment of 2D microscopy images to the 3D µCT data using scripted co-registration and automated image warping algorithms. Warped IF images, which were accurately aligned with the µCT datasets, allowed 3D segmentation of immunoreactive tissue microstructures in the human lung. Blood vessels were segmented semi-automatically using the co-registered µCT datasets. Correlating 2D IF and 3D µCT data enables accurate identification, localization and segmentation of features in fixed soft lung tissue. Our novel correlative imaging workflow provides faster and more automated 3D segmentation of µCT datasets. This is applicable to the huge range of formalin-fixed paraffin-embedded tissues held in biobanks and archives.


2021 ◽  
Author(s):  
Liana D. Wobben ◽  
Marina Codari ◽  
Gabriel Mistelbauer ◽  
Antonio Pepe ◽  
Kai Higashigaito ◽  
...  

2021 ◽  
Author(s):  
Rocco D'Antuono ◽  
Giuseppina Pisignano

Bioimage analysis workflows allow the measurement of sample properties such as fluorescence intensity and polarization, cell number, and vesicles distribution, but often require the integration of multiple software tools. Furthermore, it is increasingly appreciated that to overcome the limitations of the 2D-view-based image analysis approaches and to correctly understand and interpret biological processes, a 3D segmentation of microscopy data sets becomes imperative. Despite the availability of numerous algorithms for the 2D and 3D segmentation, the latter still offers some challenges for the end-users, who often do not have either an extensive knowledge of the existing software or coding skills to link the output of multiple tools. While several commercial packages are available on the market, fewer are the open-source solutions able to execute a complete 3D analysis workflow. Here we present ZELDA, a new napari plugin that easily integrates the cutting-edge solutions offered by python ecosystem, such as scikit-image for image segmentation, matplotlib for data visualization, and napari multi-dimensional image viewer for 3D rendering. This plugin aims to provide interactive and zero-scripting customizable workflows for cell segmentation, vesicles counting, parent-child relation between objects, signal quantification, and results presentation; all included in the same open-source napari viewer, and 'few clicks away'.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kimberly D. Trolinger-Meadows ◽  
Adam H. Biedrzycki ◽  
Hongjia He ◽  
Natasha Werpy

The use of magnetic resonance imaging (MRI) has led to increased clinical and research applications using 3D segmentation and reconstructed volumetric data in musculoskeletal imaging. Lesions of the deep digital flexor tendon (DDFT) are a common pathology in horses undergoing MRI. Three-dimensional MRI reconstruction performed for volumetric tendon analysis in horses has not previously been documented. The aim of this proof-of-concept study was to evaluate the 3D segmentation of horses undergoing repeated MRI at several time points and to perform an analysis of the segmented DDFTs across time. MRI DICOM files were acquired from six horses undergoing repeated MRI examination of the foot for DDFT injury. Once segmented, volumetric tendon surface tessellation language (STL) files were created. Thickness and volumetric data were acquired for each tendon in addition to a tendon comparison across timepoints within each horse. Pearson correlation coefficients were calculated for comparison of MRI reports to computer analysis. There was a significant and positive correlation between MRI and medial record reports of clinical improvement or deterioration and computer analysis (r = 0.56, p = 0.01). The lower end range limit for tendon thickness varied between 0.16 and 1.74 mm. The upper end range limit for DDFT thickness varied between 4.6 and 23.6 mm. During tendon part comparison, changes in DDFT were reported between −3.0 and + 14.3 mm. Changes in DDFT size were non-uniform and demonstrated fluctuations throughout the tendon. The study was successful in establishing the volumetric appearance and thickness of the DDFT as it courses in the foot and tracking this over time. We encountered difficulties in accurate segmentation of the distal insertion of the DDFT as it blends with the distal phalanx. The data demonstrated that the DDFT can be segmented and volumetric studies based on size and shape can be performed using an in silico approach.


Sign in / Sign up

Export Citation Format

Share Document