A new approach to the P-wave detection and classification based upon application of wavelet neural network

Author(s):  
T. Domider ◽  
E.J. Tkacz ◽  
P. Kostka ◽  
A. Wrzesniowski
Author(s):  
Jinlei Liu ◽  
Yunqing Liu ◽  
Yanrui Jin ◽  
Xiaojun Chen ◽  
Liqun Zhao ◽  
...  

Author(s):  
Anandakumar Haldorai ◽  
Arulmurugan Ramu

The detection of cancer in the breast is done using mammograms (x-ray images). The authors propose a CAD framework for distinguishing little changes in mammogram which may demonstrate malignancies which are too little to be felt either by the lady herself or by a radiologist. In this chapter, they build up a framework for analysis, visualization, and prediction of cancer in breast tissue by utilizing Intelligent based wavelet classifier. Intelligent-based wavelet classifier is a new approach constructed using texture value and wavelet neural network. The proposed framework is applied to the genuine clinical database of 160 mammograms gathered from mammogram screening focuses. The execution of the CAD framework is examined utilizing ROC curve. This will help the specialists in determination of the breast tissues either cancerous or noncancerous in an accurate way.


2020 ◽  
Vol 10 (3) ◽  
pp. 976
Author(s):  
Rana N. Costandy ◽  
Safa M. Gasser ◽  
Mohamed S. El-Mahallawy ◽  
Mohamed W. Fakhr ◽  
Samir Y. Marzouk

Electrocardiogram (ECG) signal analysis is a critical task in diagnosing the presence of any cardiac disorder. There are limited studies on detecting P-waves in various atrial arrhythmias, such as atrial fibrillation (AFIB), atrial flutter, junctional rhythm, and other arrhythmias due to P-wave variability and absence in various cases. Thus, there is a growing need to develop an efficient automated algorithm that annotates a 2D printed version of P-waves in the well-known ECG signal databases for validation purposes. To our knowledge, no one has annotated P-waves in the MIT-BIH atrial fibrillation database. Therefore, it is a challenge to manually annotate P-waves in the MIT-BIH AF database and to develop an automated algorithm to detect the absence and presence of different shapes of P-waves. In this paper, we present the manual annotation of P-waves in the well-known MIT-BIH AF database with the aid of a cardiologist. In addition, we provide an automatic P-wave segmentation for the same database using a fully convolutional neural network model (U-Net). This algorithm works on 2D imagery of printed ECG signals, as this type of imagery is the most commonly used in developing countries. The proposed automatic P-wave detection method obtained an accuracy and sensitivity of 98.56% and 98.78%, respectively, over the first 5 min of the second lead of the MIT-BIH AF database (a total of 8280 beats). Moreover, the proposed method is validated using the well-known automatically and manually annotated QT database (a total of 11,201 and 3194 automatically and manually annotated beats, respectively). This results in accuracies of 98.98 and 98.9%, and sensitivities of 98.97 and 97.24% for the automatically and manually annotated QT databases, respectively. Thus, these results indicate that the proposed automatic method can be used for analyzing long-printed ECG signals on mobile battery-driven devices using only images of the ECG signals, without the need for a cardiologist.


Author(s):  
C. Vasquez ◽  
A.I. Hernandez ◽  
G. Carrault ◽  
F.A. Mora ◽  
G. Passariello
Keyword(s):  
P Wave ◽  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Rong Cheng ◽  
Hongping Hu ◽  
Xiuhui Tan ◽  
Yanping Bai

The architecture and parameter initialization of wavelet neural network are discussed and a novel initialization method is proposed. The new approach can be regarded as a dynamic clustering procedure which will derive the neuron number as well as the initial value of translation and dilation parameters according to the input patterns and the activating wavelets functions. Three simulation examples are given to examine the performance of our method as well as Zhang's heuristic initialization approach. The results show that the new approach not only can decide the WNN structure automatically, but also provides superior initial parameter values that make the optimization process more stable and quickly.


Sign in / Sign up

Export Citation Format

Share Document