Novel state-of-health prediction method for lithium-ion batteries in battery storage system by using voltage variation at rest period after discharge

Author(s):  
Emha Bayu Miftahullatif ◽  
Shin Yamauchi ◽  
Jagadeeswaran Subramanian ◽  
Youji Ikeda ◽  
Tohru Kohno
2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Jules-Adrien Capitaine ◽  
Qing Wang

This paper presents a novel design for a test platform to determine the state of health (SOH) of lithium-ion batteries (LIBs). The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18,650 Li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry are stored and displayed in LabVIEW to obtain the charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify that the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb counting method in LabVIEW. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly identified.


Author(s):  
Jules-Adrien Capitaine ◽  
Qing Wang

This paper presents a novel design for a test platform to determine the State of Health (SOH) of lithium-ion batteries. The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18650 li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry is stored and displayed in LabView to obtain charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb Counting method in LabView. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly pointed out.


2021 ◽  
Author(s):  
William Seward ◽  
Weiqi Hua ◽  
Meysam Qadrdan

Traditionally, power system operation has relied on supply side flexibility from large fossil-based generation plants to managed swings in supply and/or demand. An increase in variable renewable generation has increased curtailment of renewable electricity and variations in electricity prices. Consumers can take advantage of volatile electricity prices and reduce their bills using electricity storage. With reduced fossil-based power generation, traditional methods for balancing supply and demand must change. Electricity storage offers an alternative to fossil-based flexibility, with an increase expected to support high levels of renewable generation. Electrochemical storage is a promising technology for local energy systems. In particular, lithium-ion batteries due to their high energy density and high efficiency. However, despite their 89% decrease in capital cost over the last 10 years, lithium-ion batteries are still relatively expensive. Local energy systems with battery storage can use their battery for different purposes such as maximising their self-consumption, minimising their operating cost through energy arbitrage which is storing energy when the electricity price is low and releasing the energy when the price increases, and increasing their revenue by providing flexibility services to the utility grid. Power rating and energy capacity are vitally important in the design of an electricity storage system. A case study is given for the purpose of providing a repeatable methodology for optimally sizing of a battery storage system for a local energy system. The methodology can be adapted to include any local energy system generation or demand profile.


2021 ◽  
Vol 507 ◽  
pp. 230262
Author(s):  
Lei Feng ◽  
Lihua Jiang ◽  
Jialong Liu ◽  
Zhaoyu Wang ◽  
Zesen Wei ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 487
Author(s):  
Tae-Kue Kim ◽  
Sung-Chun Moon

The growth of the lithium-ion battery market is accelerating. Although they are widely used in various fields, ranging from mobile devices to large-capacity energy storage devices, stability has always been a problem, which is a critical disadvantage of lithium-ion batteries. If the battery is unstable, which usually occurs at the end of its life, problems such as overheating and overcurrent during charge-discharge increase. In this paper, we propose a method to accurately predict battery life in order to secure battery stability. Unlike the existing methods, we propose a method of assessing the life of a battery by estimating the irreversible energy from the basic law of entropy using voltage, current, and time in a realistic dimension. The life estimation accuracy using the proposed method was at least 91.6%, and the accuracy was higher than 94% when considering the actual used range. The experimental results proved that the proposed method is a practical and effective method for estimating the life of lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document