temperature variation
Recently Published Documents


TOTAL DOCUMENTS

3014
(FIVE YEARS 558)

H-INDEX

70
(FIVE YEARS 10)

2022 ◽  
Vol 31 ◽  
pp. 100770
Author(s):  
Lucas Mallmann Wendt ◽  
Vagner Ludwig ◽  
Fabiane Portella Rossato ◽  
Magno Roberto Pasquetti Berghetti ◽  
Erani Eliseu Schultz ◽  
...  

2022 ◽  
Vol 147 ◽  
pp. 107707
Author(s):  
Jingjun Lin ◽  
Jiangfei Yang ◽  
Yutao Huang ◽  
Xiaomei Lin

2024 ◽  
Vol 84 ◽  
Author(s):  
L. G. Gomes ◽  
M. B. Stocco ◽  
N. P. de Sousa ◽  
A. C. Martini ◽  
T. O. Morgado ◽  
...  

Abstract This study aimed to evaluate whether skeletal development of the Pantanal Caiman (Caiman yacare) is similarly influenced by temperature variation and controlled increases in embryo motility. All eggs were incubated at 90% humidity and 29 °C for the first 45 days. Thereafter, the incubation temperature was either maintained at 29 °C and embryos were treated with 4-aminopyridine (4-AP) on days 46, 47, 48, and 49 (Group I, 29 °C 4-AP, n = 15); maintained at 29 °C (n = 14; Group II); or at 33 °C (n = 14, Group III). Embryonic movement was measured using an Egg Buddy® digital monitor on days 30, 35, 42, 49, 56, and 60, at which point embryos were euthanized and samples were collected for analysis. No differences were observed between groups with varying incubation temperatures. In contrast, embryonic motility was greater in embryos treated with 4-AP (P < 0.001) on day 49, and this was associated with higher proportions of snout-vent and hand lengths. This study demonstrates for the first time that pharmacologically induced increases in embryo motility result in phenotypic changes to the proportion of elements during prenatal ontogeny, thereby effectively altering the adaptation of the species to specific environments.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Shiu-Ming Huang ◽  
Pin-Cing Wang ◽  
Pin-Cyuan Chen ◽  
Jai-Long Hong ◽  
Cheng-Maw Cheng ◽  
...  

AbstractThe magnetization measurement was performed in the Bi0.3Sb1.7Te3 single crystal. The magnetic susceptibility revealed a paramagnetic peak independent of the experimental temperature variation. It is speculated to be originated from the free-aligned spin texture at the Dirac point. The ARPES reveals that the Fermi level lies below the Dirac point. The Fermi wavevector extracted from the de Haas–van Alphen oscillation is consistent with the energy dispersion in the ARPES. Our experimental results support that the observed paramagnetic peak in the susceptibility curve does not originate from the free-aligned spin texture at the Dirac point.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 504
Author(s):  
Harpreet Kaur ◽  
Rainer Künnemeyer ◽  
Andrew McGlone

Using the framework of aquaphotomics, we have sought to understand the changes within the water structure of kiwifruit juice occurring with changes in temperature. The study focuses on the first (1300–1600 nm) and second (870–1100 nm) overtone regions of the OH stretch of water and examines temperature differences between 20, 25, and 30 °C. Spectral data were collected using a Fourier transform–near-infrared spectrometer with 1 mm and 10 mm transmission cells for measurements in the first and second overtone region, respectively. Water wavelengths affected by temperature variation were identified. Aquagrams (water spectral patterns) highlight slightly different responses in the first and second overtone regions. The influence of increasing temperature on the peak absorbance of the juice was largely a lateral wavelength shift in the first overtone region and a vertical amplitude shift in the second overtone region of water. With the same data set, we investigated the use of external parameter orthogonalisation (EPO) and extended multiple scatter correction (EMSC) pre-processing to assist in building temperature-independent partial least square regression models for predicting soluble solids concentration (SSC) of kiwifruit juice. The interference component selected for correction was the first principal component loading measured using pure water samples taken at the same three temperatures (20, 25, and 30 °C). The results show that the EMSC method reduced SSC prediction bias from 0.77 to 0.1 °Brix in the first overtone region of water. Using the EPO method significantly reduced the prediction bias from 0.51 to 0.04 °Brix, when applying a model made at one temperature (30 °C) to measurements made at another temperature (20 °C) in the second overtone region of water.


Sign in / Sign up

Export Citation Format

Share Document