scholarly journals Design of a Test Platform for the Determination of Lithium-Ion Batteries State of Health

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Jules-Adrien Capitaine ◽  
Qing Wang

This paper presents a novel design for a test platform to determine the state of health (SOH) of lithium-ion batteries (LIBs). The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18,650 Li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry are stored and displayed in LabVIEW to obtain the charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify that the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb counting method in LabVIEW. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly identified.

Author(s):  
Jules-Adrien Capitaine ◽  
Qing Wang

This paper presents a novel design for a test platform to determine the State of Health (SOH) of lithium-ion batteries. The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18650 li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry is stored and displayed in LabView to obtain charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb Counting method in LabView. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly pointed out.


2021 ◽  
Vol 300 ◽  
pp. 01003
Author(s):  
Yunfan Meng

With battery energy storage technology development, the centralized battery energy storage system (CBESS) has a broad prospect in developing electricity. In the meantime, the retired lithium-ion batteries from electric vehicles (EV) offer a new option for battery energy storage systems (BESS). This paper studies the centralized reused battery energy storage system (CRBESS) in South Australia by replacing the new lithium-ion batteries with lithium-ion second-life batteries (SLB) and evaluating the economic benefits with economic indicators as net present value (NPV), discounted payback period (DPBP), Internal rate of return (IRR) to depict a comprehensive understanding of the development potential of the CRBESS with the lithium-ion SLB as the energy storage system. This paper proposes a calculation method of frequency control ancillary services (FCAS) revenue referring to market share rate (MSR) when building the economic model. Moreover, the residual value of lithium-ion batteries is considered. This paper uses the economic model to calculate the profitability and development potential of CRBESS. From an economic perspective, the superiority and feasibility of CRBESS compared with CBESS were analyzed.


2021 ◽  
Author(s):  
Mohammad Hassan Amir Jamlouie

Over the last century, the energy storage industry has continued to evolve and adapt to changing energy requirements. To run an efficient energy storage system two points must be considered. Firstly, precise load forecasting to determine energy consumption pattern. Secondly, is the correct estimation of state of charge (SOC). In this project there is a model introduced to predict the load consumption based on ANN implemented by MATLAB. The Designed intelligent system introduced for load prediction according to the hypothetical training data related to two years daily based load consumption of a residential area. For another obstacle which is accurate estimation of SOC, two separate models are provided based on ANN and ANFIS for Lithium-ion batteries as an energy storage system. There are several researches in this regard but in this project the author makes an effort to introduce the most efficient based on the MSE of each performance and as a result the method by ANN is found more accurate.


Batteries ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 57 ◽  
Author(s):  
Seyed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

The determination of coulombic efficiency of the lithium-ion batteries can contribute to comprehend better their degradation behavior. In this research, the coulombic efficiency and capacity loss of three lithium-ion batteries at different current rates (C) were investigated. Two new battery cells were discharged and charged at 0.4 C and 0.8 C for twenty times to monitor the variations in the aging and coulombic efficiency of the battery cell. In addition, prior cycling was applied to the third battery cell which consist of charging and discharging with 0.2 C, 0.4 C, 0.6 C, and 0.8 C current rates and each of them twenty times. The coulombic efficiency of the new battery cells was compared with the cycled one. The experiments demonstrated that approximately all the charge that was stored in the battery cell was extracted out of the battery cell, even at the bigger charging and discharging currents. The average capacity loss rates for discharge and charge during 0.8 C were approximately 0.44% and 0.45% per cycle, correspondingly.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1402 ◽  
Author(s):  
Robert Małkowski ◽  
Marcin Jaskólski ◽  
Wojciech Pawlicki

This paper presents research on a hybrid photovoltaic-battery energy storage system, declaring its hourly production levels as a member of a balancing group submitting common scheduling unit to the day-ahead market. It also discusses the variability of photovoltaic system generation and energy storage response. The major research questions were whether the operation of a hybrid photovoltaic-battery energy storage system is viable from the technical and economic viewpoint and how to size battery energy storage for that purpose. The DIgSILENT PowerFactory environment was used to develop the simulation model of postulated hybrid system. Then, tests were conducted on real devices installed in the LINTE^2 laboratory at Gdańsk University of Technology, Poland. Firstly, power generation in the photovoltaic system was modeled using hardware in the loop technique and tested in cooperation with emulated photovoltaic and real battery energy storage system (lithium-ion battery, 25 kWh). Secondly, a real photovoltaic power plant (33 kW) and real battery energy storage were applied. The results obtained from laboratory experiments showed that market operation of hybrid photovoltaic-battery energy storage system is feasible. However, developing a control strategy constitutes a great challenge, as the operator is forced to intervene more frequently than the simulation models indicate in order to keep the parameters of battery storage within accepted ranges, especially in view of a sudden weather breakdown. Levelized cost of electricity from photovoltaic-battery energy storage system varied from 314 to 455 $/MWh, which has proven to be from two to three times higher than the current annual average day-ahead market price in Poland.


Sign in / Sign up

Export Citation Format

Share Document