A New Inversion Technique For HF Radar Measurement Of The Ocean Wave Directional Spectrum

Author(s):  
L.R. Wyatt
2011 ◽  
Vol 1 (32) ◽  
pp. 65 ◽  
Author(s):  
Lukijanto Lukijanto ◽  
Noriaki Hashimoto ◽  
Masaru Yamashiro

A Modified Bayesian Method (MBM) for estimating directional wave spectra from Doppler spectra obtained by HF radar is examined using field data which were employed in the verification of Bayesian Method (BM). Applicability, validity and accuracy of the MBM are demonstrated compared with the directional wave spectra estimated by BM and observed by buoy acquired from the reliable field data obtained from Surface Current and Wave Variability Experiments (SCAWVEX) project. The necessary conditions of the Doppler spectral components to be used to estimate a reliable directional spectrum are correspondingly estimated by BM. The results clearly demonstrate that directional wave spectra can be estimated by MBM on the basis of Doppler spectra. In addition, though BM shows very time consuming in computations, BM is more robust against the presence of noise than MBM. References Akaike, H. (1980). Likelihood and Bayesian procedure, Bayesian statistics. In J.M. Bernardo, M.H. De Groot, D.U. Lindley, and A.F.M. Smith (Eds.), 143-166. Valencia: University Press. PMid:6252024 Barrick, D. E. (1972a). First order theory and analysis of MF/HF/VHF scatter from sea. IEEE Trans., Antennas Propagation, 20, 2-10. http://dx.doi.org/10.1109/TAP.1972.1140123 Barrick, D. E. (1977). Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Science, 12(3), 415–424. http://dx.doi.org/10.1029/RS012i003p00415 Crombie, D. (1955). Doppler spectrum of sea echo at 13.56Mc/s. Nature, 175, 681-682. http://dx.doi.org/10.1038/175681a0 Hashimoto, N. and Kobune, K. (1986). Estimation of directional spectra from the maximum entropy principle. Proceedings of 5th International Offshore Mechanics and Arctic Engineering Symposium, 1, 80-85. Hashimoto, N., Kobune, K., and Kameyama, Y. (1987). Estimation of directional spectrum using the Bayesian approach, and its application to field data analysis. Report of P.H.R.I., 26(5), 57-100. Hashimoto N., and Tokuda M., (1999): A Bayesian Method Approach for Estimation of Directional Wave Spectra with HF radar, Coastal Engineering Journal, vol. 41, 137-147. http://dx.doi.org/10.1142/S0578563499000097 Hashimoto, N., Wyatt, L and Kojima, S. (2003): Verification of Bayesian Method for Estimating Directional Spectra from HF Radar Surface. Coastal Engineering Journal, 45(2), 255-274. http://dx.doi.org/10.1142/S0578563403000725 Hashimoto, N., Lukijanto, and Yamashiro, M. (2008). Development of a practical method for estimating directional spectrum from HF radar backscatter. Annual Journal of Coastal Engineering (in Japanese), 55(1), 1451-1455. http://dx.doi.org/10.2208/proce1989.55.1451 Hisaki, Y. (1996). Nonlinear inversion of the integral equation to estimate ocean wave spectra from HF radar. Radio science, 31(1), 25-39. http://dx.doi.org/10.1029/95RS02439 Howell, R., and Walsh, J. (1993). Measurement of ocean wave spectra using a ship mounted HF radar. IEEE Journal of Oceanic Engineering, 18(3), 306-310. http://dx.doi.org/10.1109/JOE.1993.236369 Lipa, B. J. and Barrick, D.E. (1982) : Analysis Methods for Narrow-Beam High-Frequency Radar Sea Echo, NOAA Technical Report ERL 420-WPL 56, 1-55. Lukijanto, Hashimoto, N., and Yamashiro, M. (2009a). Further modification practical method for estimating directional wave spectrum by HF radar. Proc. of 19 th ISOPE, 898-905. Lukijanto, Hashimoto, N., and Yamashiro, M. (2009b). An improvement of Modified Bayesian Method for estimating directional wave spectra from HF radar backscatter. Proceedings of 5 th APAC (Asian and Pacific Coasts), 105-111. Lukijanto, Hashimoto, N., and Yamashiro, M. (2009c). A comparison of analysis methods for estimating directional wave spectrum from HF ocean radar. Journal of Memoirs of the Faculty of Engineering, 69(4). Kyushu University, 163-185. Wyatt, L.R. (1990). A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectrum. International Journal Remote Sensing, 11(8), 1481-1494. http://dx.doi.org/10.1080/01431169008955106 Wyatt, L. R. Gurgel, K.W., Peters, H.C., Prandle, D., Krogstad, H.E., Haug, O., Gerritsen, H., Wensink, G.J. (1997b). The SCAWVEX Project. Proceedings of WAVES97, ASCE.


1986 ◽  
Vol 11 (2) ◽  
pp. 219-234 ◽  
Author(s):  
L. Wyatt ◽  
J. Venn ◽  
G. Burrows ◽  
A. Ponsford ◽  
M. Moorhead ◽  
...  

2012 ◽  
Vol 9 (19) ◽  
pp. 1542-1549 ◽  
Author(s):  
Ze-zong Chen ◽  
Lin-gang Fan ◽  
Chen Zhao ◽  
Yan Jin

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Chien-Ya Wang ◽  
Ching-Lun Su ◽  
Kang-Hung Wu ◽  
Yen-Hsyang Chu

It is well known that the primary targets responsible for first-order sea echoes observed by a High-Frequency (HF) radar are the advancing and receding ocean waves with the wavelengths at Bragg scales. However, in light of the fact that the ionospheric sporadic E (Es) and F layers may be present in the viewing range of the HF radar for ocean wave detection, the radar returns reflected from the F and Es layers may significantly contaminate the ocean wave power spectrum. The characteristics of the first-order sea echoes and ionospheric interferences measured by the CODAR-SeaSonde in Taiwan area are analyzed and presented in this article. The coherences and phases of the normalized cross spectra of the sea and ionospheric echoes between different pairs of the receiving channels are calculated, respectively. One of the striking features presented in this report is that the ionospheric echo heights scaled from the ionogram observed by the Chung-Li ionosonde are about 30 km lower than those observed by the DATAN CODAR-SeaSonde. It is also found that the coherences of the sea echoes are generally smaller than those of the ionospheric echoes by about 15% on average, and the phase fluctuations (standard deviations) of the sea echoes are substantially larger than those of the ionospheric layer reflection echoes. In addition, statistics show that the sum of the mean phases of the ionospheric echoes between the three receiving channel pairs is approximately zero, while it is not for the sea echoes. These results seem to suggest that the use of the discrepancies in the characteristics of the coherences and phases between the sea and ionospheric echoes may provide a potential means to be helpful to distinguish the sea and ionospheric echoes in the CODAR-SeaSonde observed cross power spectrum.


Sign in / Sign up

Export Citation Format

Share Document