Research on relationship between remote sensing image quality and performance of interest point detection

Author(s):  
Jicheng Wang ◽  
Yuanxin Ye ◽  
Li Shen ◽  
Zhipeng Li ◽  
Songbo Wu
2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2012 ◽  
Vol 263-266 ◽  
pp. 2320-2323 ◽  
Author(s):  
Ying Gao ◽  
Rui Zhao Wang ◽  
Jue Yuan

Based on interest point detection, a feature preserving mesh simplification algorithm is proposed. The Harris operator values of all vertices in the mesh were computed firstly. On the base of Garland’s simplification algorithm, we combine the Harris operator value with quadric error metric and change the order of edge collapsing in the simplification. The experimental results show that the proposed algorithm is effective and feature preserving.


2008 ◽  
Vol 22 (3) ◽  
pp. 309-318 ◽  
Author(s):  
Mohammed Benjelloun ◽  
Saïd Mahmoudi

Sign in / Sign up

Export Citation Format

Share Document