multispectral remote sensing
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 116)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Ke Wang ◽  
Hainan Chen ◽  
Ligang Cheng ◽  
Jian Xiao

Many studies have focused on performing variational-scale segmentation to represent various geographical objects in high-resolution remote-sensing images. However, it remains a significant challenge to select the most appropriate scales based on the geographical-distribution characteristics of ground objects. In this study, we propose a variational-scale multispectral remote-sensing image segmentation method using spectral indices. Real scenes in remote-sensing images contain different types of land cover with different scales. Therefore, it is difficult to segment images optimally based on the scales of different ground objects. To guarantee image segmentation of ground objects with their own scale information, spectral indices that can be used to enhance some types of land cover, such as green cover and water bodies, were introduced into marker generation for the watershed transformation. First, a vector field model was used to determine the gradient of a multispectral remote-sensing image, and a marker was generated from the gradient. Second, appropriate spectral indices were selected, and the kernel density estimation was used to generate spectral-index marker images based on the analysis of spectral indices. Third, a series of mathematical morphology operations were used to obtain a combined marker image from the gradient and the spectral index markers. Finally, the watershed transformation was used for image segmentation. In a segmentation experiment, an optimal threshold for the spectral-index-marker generation method was identified. Additionally, the influence of the scale parameter was analyzed in a segmentation experiment based on a five-subset dataset. The comparative results for the proposed method, the commonly used watershed segmentation method, and the multiresolution segmentation method demonstrate that the proposed method yielded multispectral remote-sensing images with much better performance than the other methods.


2021 ◽  
Vol 13 (24) ◽  
pp. 5164
Author(s):  
Eduardo R. Oliveira ◽  
Leonardo Disperati ◽  
Fátima L. Alves

This work presents a change detection method (MINDED-BA) for determining burned extents from multispectral remote sensing imagery. It consists of a development of a previous model (MINDED), originally created to estimate flood extents, combining a multi-index image-differencing approach and the analysis of magnitudes of the image-differencing statistics. The method was implemented, using Landsat and Sentinel-2 data, to estimate yearly burn extents within a study area located in northwest central Portugal, from 2000–2019. The modelling workflow includes several innovations, such as preprocessing steps to address some of the most important sources of error mentioned in the literature, and an optimal bin number selection procedure, the latter being the basis for the threshold selection for the classification of burn-related changes. The results of the model have been compared to an official yearly-burn-extent database and allow verifying the significant improvements introduced by both the pre-processing procedures and the multi-index approach. The high overall accuracies of the model (ca. 97%) and its levels of automatization (through open-source software) indicate potential for being a reliable method for systematic unsupervised classification of burned areas.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012064
Author(s):  
P. Lokeshwara Reddy ◽  
Santosh Pawar ◽  
S.L. Prathapa Reddy

Abstract With the advent of sensor technology, the exertion of multispectral image (MSI) is comely omnipresent. Denoising is an essential quest in multispectral image processing which further improves recital of unmixing, classification and supplementary ensuing praxis. Explication and ocular analysis are essential to extricate data from remote sensing images for broad realm of supplications. This paper describes curvelet transform based denoising of multispectral remote sensing images. The implementation of curvelet transform is done by using both wrapping function and unequally spaced fast Fourier transform (USFFT) and they diverge in selection of spatial grid which is used to construe curvelets at every orientation and scale. The coefficients of curvelets are docket by a scaling factor, angle and spatial location criterion. This paper crisps on denoising of Linear Imaging Self Scanning Sensor (LISS) III images. The proposed denoising approach has also been collated with some existing schemes for assessment. The efficacy of proposed approach is analyzed with calculation of facet matrices such as Peak signal to noise ratio and Structural similarity at distinct variance of noise..


2021 ◽  
Vol 13 (19) ◽  
pp. 3970
Author(s):  
Huan Zhao ◽  
Junsheng Li ◽  
Xiang Yan ◽  
Shengzhong Fang ◽  
Yichen Du ◽  
...  

Some lakes in China have undergone serious eutrophication, with cyanobacterial blooms occurring frequently. Dynamic monitoring of cyanobacterial blooms is important. At present, the traditional lake-survey-based cyanobacterial bloom monitoring is spatiotemporally limited and requires considerable human and material resources. Although satellite remote sensing can rapidly monitor large-scale cyanobacterial blooms, clouds and other factors often mean that effective images cannot be obtained. It is also difficult to use this method to dynamically monitor and manage aquatic environments and provide early warnings of cyanobacterial blooms in lakes and reservoirs. In contrast, ground-based remote sensing can operate under cloud cover and thus act as a new technical method to dynamically monitor cyanobacterial blooms. In this study, ground-based remote-sensing technology was applied to multitemporal, multidirectional, and multiscene monitoring of cyanobacterial blooms in Dianchi Lake via an area array multispectral camera mounted on a rotatable cloud platform at a fixed station. Results indicate that ground-based imaging remote sensing can accurately reflect the spatiotemporal distribution characteristics of cyanobacterial blooms and provide timely and accurate data for salvage treatment and early warnings. Thus, ground-based multispectral remote-sensing data can operationalize the dynamic monitoring of cyanobacterial blooms. The methods and results from this study can provide references for monitoring such blooms in other lakes.


2021 ◽  
Author(s):  
Kristofer Lasko

Wildland fires result in a unique signal detectable by multispectral remote sensing and synthetic aperture radar (SAR). However, in many regions, such as Southeast Asia, persistent cloud cover and aerosols temporarily obstruct multispectral satellite observations of burned area, including the MODIS MCD64A1 Burned Area Product (BAP). Multiple days between cloud free pre- and postburn MODIS observations result in burn date uncertainty. We incorporate cloud-penetrating, C-band SAR-with the MODIS MCD64A BAP in Southeast Asia, to exploit the strengths of each dataset to better estimate the burn date and reduce the potential burn date uncertainty range. We incorporate built-in quality control using MCD64A1 to reduce erroneous pixel updating. We test the method over part of Laos and Thailand during April 2016 and found average uncertainty reduction of 4.5 d, improving 15% of MCD64A1 pixels. A new BAP could improve monitoring temporal trends of wildland fires, air quality studies and monitoring post-fire vegetation dynamics.


2021 ◽  
Vol 42 (19) ◽  
pp. 7428-7453
Author(s):  
Victor Hugo Gutierrez-Velez ◽  
Jeronimo Rodriguez-Escobar ◽  
Wilson Lara ◽  
Victoria Sarmiento-Giraldo

Sign in / Sign up

Export Citation Format

Share Document