interest points
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 61)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
Vol 34 (3) ◽  
pp. 1-21
Author(s):  
Xue Yu

The purpose is to solve the problems of sparse data information, low recommendation precision and recall rate and cold start of the current tourism personalized recommendation system. First, a context based personalized recommendation model (CPRM) is established by using the labeled-LDA (Labeled Latent Dirichlet Allocation) algorithm. The precision and recall of interest point recommendation are improved by mining the context information in unstructured text. Then, the interest point recommendation framework based on convolutional neural network (IPRC) is established. The semantic and emotional information in the comment text is extracted to identify user preferences, and the score of interest points in the target location is predicted combined with the influence factors of geographical location. Finally, real datasets are adopted to evaluate the recommendation precision and recall of the above two models and their performance of solving the cold start problem.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Biao Ma ◽  
Minghui Ji

Both the human body and its motion are three-dimensional information, while the traditional feature description method of two-person interaction based on RGB video has a low degree of discrimination due to the lack of depth information. According to the respective advantages and complementary characteristics of RGB video and depth video, a retrieval algorithm based on multisource motion feature fusion is proposed. Firstly, the algorithm uses the combination of spatiotemporal interest points and word bag model to represent the features of RGB video. Then, the directional gradient histogram is used to represent the feature of the depth video frame. The statistical features of key frames are introduced to represent the histogram features of depth video. Finally, the multifeature image fusion algorithm is used to fuse the two video features. The experimental results show that multisource feature fusion can greatly improve the retrieval accuracy of motion features.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Guanglu Liu

With the improvement of living standards, more and more people are pursuing personalized routes. This paper uses personalized mining of interest points of ethnic minority tourism demand groups, extracts customer data features in social networks, and constructs data features of interesting topic factors, geographic location factors, and user access frequency factors, using LDA topic models and matrix decomposition models to perform feature vectorization processing on user sign-in records and build deep learning recommendation model (DLM). Using this model to compare with the traditional recommendation model and the recommendation model of a single data feature module, the experimental results show the following: (1) The fitting error of DLM recommendation results is significantly reduced, and its recommendation accuracy rate is 50% higher than that of traditional recommendation algorithms. The experimental results show that the DLM constructed in this paper has good learning and training performance, and the recommendation effect is good. (2) In this method, the performance of the DLM is significantly higher than other POI recommendation methods in terms of the accuracy or recall rate of the recommendation algorithm. Among them, the accuracy rates of the top five, top ten, and top twenty recommended POIs are increased by 9.9%, 7.4%, and 7%, respectively, and the recall rate is increased by 4.2%, 7.5%, and 14.4%, respectively.


2021 ◽  
Author(s):  
Alexis Koulidis ◽  
Mohamed Abdullatif ◽  
Ahmed Galal Abdel-Kader ◽  
Mohammed-ilies Ayachi ◽  
Shehab Ahmed ◽  
...  

Abstract Surface data measurement and analysis are an established mean of detecting drillstring low-frequency torsional vibration or stick-slip. The industry has also developed models that link surface torque and downhole drill bit rotational speed. Cameras provide an alternative noninvasive approach to existing wired/wireless sensors used to gather such surface data. The results of a preliminary field assessment of drilling dynamics utilizing camera-based drillstring monitoring are presented in this work. Detection and timing of events from the video are performed using computer vision techniques and object detection algorithms. A real-time interest point tracker utilizing homography estimation and sparse optical flow point tracking is deployed. We use a fully convolutional deep neural network trained to detect interest points and compute their accompanying descriptors. The detected points and descriptors are matched across video sequences and used for drillstring rotation detection and speed estimation. When the drillstring's vibration is invisible to the naked eye, the point tracking algorithm is preceded with a motion amplification function based on another deep convolutional neural network. We have clearly demonstrated the potential of camera-based noninvasive approaches to surface drillstring dynamics data acquisition and analysis. Through the application of real-time object detection algorithms on rig video feed, surface events were detected and timed. We were also able to estimate drillstring rotary speed and motion profile. Torsional drillstring modes can be identified and correlated with drilling parameters and bottomhole assembly design. A novel vibration array sensing approach based on a multi-point tracking algorithm is also proposed. A vibration threshold setting was utilized to enable an additional motion amplification function providing seamless assessment for multi-scale vibration measurement. Cameras were typically devices to acquire images/videos for offline automated assessment (recently) or online manual monitoring (mainly), this work has shown how fog/edge computing makes it possible for these cameras to be "conscious" and "intelligent," hence play a critical role in automation/digitalization of drilling rigs. We showcase their preliminary application as drilling dynamics and rig operations sensors in this work. Cameras are an ideal sensor for a drilling environment since they can be installed anywhere on a rig to perform large-scale live video analytics on drilling processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chen Pan ◽  
Junling Zhou ◽  
Xiaohua Huang

High activity is an important manifestation of the stable development of urban social economy. Quantitative research on urban development based on the geographical label perception of urban vitality is a new technical means and way to study urban vitality. In this paper, points of interest and Weibo check-in geographic markers are used to analyze urban vitality indicators and urban vitality distribution patterns. Through the application of different indexes, the ordinary linear regression and spatial autoregressive models between urban vitality and built environment are established to explore the factors that affect urban vitality. Results of the research show that interest points and social media check-in data can better indicate urban vitality. The urban vitality of the Macao Special Administrative Region is mainly affected by the density of land use, buildings, and public transportation.


2021 ◽  
Vol 6 (22) ◽  
pp. 25-35
Author(s):  
A F M Saifuddin Saif ◽  
Zainal Rasyid Mahayuddin

Integration of technology for the Fourth Industrial Revolution (IR 4.0) has increased the need for efficient methods for developing dynamic human computer interfaces and virtual environments. In this context, hand gesture recognition can play a vital role to serve as a natural mode of interactive human machine interaction. Unfixed brightness, complex backgrounds, color constraints, dependency on hand shape, rotation, and scale variance are the challenging issues which have an impact on robust performance for the existing methods as per outlined in previous researches. This research presents an efficient method for hand gesture recognition by constructing a robust features vector. The proposed method is performed in two phases, where in the first phase the features vector is constructed by selecting interest points at distinctive locations using a blob detector based on Hessian matrix approximation. After detecting the area of the hand from the features vector, edge detection is applied in the isolated hand followed by edge orientation computation. After this, templates are generated using one and two dimensional mapping to compare candidate and prototype images using adaptive threshold. The proposed research performed extensive experimentation, where a recognition accuracy rate of 98.33% was achieved by it, which is higher as compared to previous research results. Experimental results reveal the effectiveness of the proposed methodology in real time.


2021 ◽  
Vol 21 (4) ◽  
pp. 1-21
Author(s):  
Zhiyang Lin ◽  
Jihua Zhu ◽  
Zutao Jiang ◽  
Yujie Li ◽  
Yaochen Li ◽  
...  

Building an accurate map is essential for autonomous robot navigation in the environment without GPS. Compared with single-robot, the multiple-robot system has much better performance in terms of accuracy, efficiency and robustness for the simultaneous localization and mapping (SLAM). As a critical component of multiple-robot SLAM, the problem of map merging still remains a challenge. To this end, this article casts it into point set registration problem and proposes an effective map merging method based on the context-based descriptors and correspondence expansion. It first extracts interest points from grid maps by the Harris corner detector. By exploiting neighborhood information of interest points, it automatically calculates the maximum response radius as scale information to compute the context-based descriptor, which includes eigenvalues and normals computed from local structures of each interest point. Then, it effectively establishes origin matches with low precision by applying the nearest neighbor search on the context-based descriptor. Further, it designs a scale-based corresponding expansion strategy to expand each origin match into a set of feature matches, where one similarity transformation between two grid maps can be estimated by the Random Sample Consensus algorithm. Subsequently, a measure function formulated from the trimmed mean square error is utilized to confirm the best similarity transformation and accomplish the coarse map merging. Finally, it utilizes the scaling trimmed iterative closest point algorithm to refine initial similarity transformation so as to achieve accurate merging. As the proposed method considers scale information in the context-based descriptor, it is able to merge grid maps in diverse resolutions. Experimental results on real robot datasets demonstrate its superior performance over other related methods on accuracy and robustness.


Author(s):  
Ayeesha ◽  
Fathima Zeela ◽  
Vijetha

India is agricultural country and Indian farmer select wide selection of fruit and vegetable crops. The cultivation of crops can be improved by the technological support. Fruits and vegetables losses are caused by disease. Diseases are seen on the leaves and fruits of plant, therefore disease detection plays a crucial role in cultivation of crops. Pathogens, fungi, microorganism, bacteria and viruses are sorts of fruit diseases also unhealthy environment is responsible for diseases. There are many techniques to spot diseases in fruits in its early stages. Hence, there's a requirement of automatic fruit unwellness detection system within the early stage of the unwellness. The aim is to detect the fruit disease, this method take input as image of fruit and determine it as infected or non- infected. The proposed method is based on the use of Scale-invariant Feature Transform (SIFT) Model with the desirable goal of accurate and fast classification of fruits. The SIFT features are local and based on the appearance of the object at particular interest points, and are invariant to image scale and rotation. They are also robust to changes in illumination, noise, and minor changes in viewpoint on image processing theory. SIFT have significant advantages because of their high accuracy, relatively easy to extract and allow for correct object identification with low probability of mismatch. Besides, they do not need an outsized number of coaching samples to avoid overfitting.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wanyuan Zhang ◽  
Tian Zhou ◽  
Chao Xu ◽  
Meiqin Liu

Multibeam imaging sonar has become an increasingly important tool in the field of underwater object detection and description. In recent years, the scale-invariant feature transform (SIFT) algorithm has been widely adopted to obtain stable features of objects in sonar images but does not perform well on multibeam sonar images due to its sensitivity to speckle noise. In this paper, we introduce MBS-SIFT, a SIFT-like feature detector and descriptor for multibeam sonar images. This algorithm contains a feature detector followed by a local feature descriptor. A new gradient definition robust to speckle noise is presented to detect extrema in scale space, and then, interest points are filtered and located. It is also used to assign orientation and generate descriptors of interest points. Simulations and experiments demonstrate that the proposed method can capture features of underwater objects more accurately than existing approaches.


2021 ◽  
Author(s):  
Anh-Dzung Doan ◽  
Daniyar Turmukhambetov ◽  
Yasir Latif ◽  
Tat-Jun Chin ◽  
Soohyun Bae
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document