New Method of Active Power Measurement under the Conditions of Non-Stationary Distortion Signals

Author(s):  
Xiao-Bing Zhang
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Xiao-Bing Zhang ◽  
Yun-Hui Li ◽  
Xiao-Meng Cui

This paper discusses a new method for calculating active power in the multiwavelet domain. When the voltage and current waveforms are analyzed using multiwavelet, the active power can be calculated by simply adding the products of the multiwavelet coefficients without having to reconstruct the signals back to the time domain first and then using the traditional integration. From the simulation result, we can see that the results using multiwavelet are better than the ones using wavelet and Fourier Transforms no matter which prefilter is used.


2013 ◽  
Vol 816-817 ◽  
pp. 1090-1093 ◽  
Author(s):  
Hai Bao ◽  
Xin Huang ◽  
Ling Wang ◽  
Gang Liu

Owing to the given variables are measurable in online power flow calculation, the electrical variables of higher measuring accuracy should be chosen for calculation. Currently the theory of reactive power is deficient and several methods for reactive power measurement are briefly introduced in this paper. The inaccuracy of those methods is pointed out by the relevant references in non-sinusoidal conditions. The measuring accuracy of Active power directly obtained by voltage and current is the same as that of voltage and current. For increasing the accuracy of online power flow calculation, a method substituting voltage magnitude for reactive power is proposed in this paper. The new method eliminates the effects resulted from inaccurate reactive power measurement. The simulation results on software MATPOWER verify the correctness and rationality of the new method.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1374
Author(s):  
Bartosz Rozegnał ◽  
Paweł Albrechtowicz ◽  
Dominik Mamcarz ◽  
Monika Rerak ◽  
Maciej Skaza

This paper presents the skin effect impact on the active power losses in the sheathless single-core cables/wires supplying nonlinear loads. There are significant conductor losses when the current has a distorted waveform (e.g., the current supplying diode rectifiers). The authors present a new method for active power loss calculation. The obtained results have been compared to the IEC-60287-1-1:2006 + A1:2014 standard method and the method based on the Bessel function. For all methods, the active power loss results were convergent for small-cable cross-section areas. The proposed method gives smaller power loss values for these cable sizes than the IEC and Bessel function methods. For cable cross-section areas greater than 185 mm2, the obtained results were better than those for the other methods. There were also analyses of extra power losses for distorted currents compared to an ideal 50 Hz sine wave for all methods. The new method is based on the current penetration depth factor calculated for every considered current harmonics, which allows us to calculate the precise equivalent resistance for any cable size. This research is part of our work on a cable thermal analysis method that has been developed.


Sign in / Sign up

Export Citation Format

Share Document