harmonic power
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 60)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 2070 (1) ◽  
pp. 012134
Author(s):  
D Krishna Praveen ◽  
ShaikHussain Vali ◽  
Vempalle Rafi

Abstract Ideally, an AC power supply should constantly provide a perfectly sinusoidal voltage signal at every customer location. Nowadays, many power electronic equipment’s are used in industry in seeking higher system reliability and efficiency and more electronic or microprocessor controllers are used in power system to control AC/DC transmission lines or loads. Moreover, the importance of green energy such as wind and solar is continually growing in our societies not only due to environmental concerns but also to resolve the problem of access to electricity in rural areas. As a result of these issues, power quality problems especially generation of harmonics are on the rise in the distribution network. In electrical power system, harmonics have a number of undesirable effects on power system devices as well as on their operation. It therefore becomes imperative for power system engineers to analyse the penetration of harmonics from the various sources into the network which commonly is known as harmonic power flow evaluation. This paper proposed a novel fast hybrid frequency domain approach (FHA) to evaluate the steady state harmonic power flow with discrete harmonic frequency. The proposed method is applied to IEEE – 14 bus, IEEE New England 39 - bus, IEEE – 57 bus and IEEE 118 - bus power system respectively and compared with Newton – Raphson (NR) load flow method and Fast decoupled load flow method (FDLF) and the results validate the accuracy, robustness and authenticity of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2663
Author(s):  
Raavi Satish ◽  
Kanchapogu Vaisakh ◽  
Almoataz Y. Abdelaziz ◽  
Adel El-Shahat

Due to the rapid advancement in power electronic devices in recent years, there is a fast growth of non-linear loads in distribution networks (DNs). These non-linear loads can cause harmonic pollution in the networks. The harmonic pollution is low, and the resonance problem is absent in distribution static synchronous compensators (D-STATCOM), which is the not case in traditional compensating devices such as capacitors. The power quality issue can be enhanced in DNs with the interfacing of D-STATCOM devices. A novel three-phase harmonic power flow algorithm (HPFA) for unbalanced radial distribution networks (URDN) with the existence of linear and non-linear loads and the integration of a D-STATCOM device is presented in this paper. The bus number matrix (BNM) and branch number matrix (BRNM) are developed in this paper by exploiting the radial topology in DNs. These matrices make the development of HPFA simple. Without D-STATCOM integration, the accuracy of the fundamental power flow solution and harmonic power flow solution are tested on IEEE−13 bus URDN, and the results are found to be precise with the existing work. Test studies are conducted on the IEEE−13 bus and the IEEE−34 bus URDN with interfacing D-STATCOM devices, and the results show that the fundamental r.m.s voltage profile is improved and the fundamental harmonic power loss and total harmonic distortion (THD) are reduced.


2021 ◽  
Author(s):  
Johanna Castellanos ◽  
Diego Patino ◽  
Carlos Adrian Correa-Florez ◽  
Gabriel Ordonez-Plata ◽  
Alejandro Garces
Keyword(s):  

2021 ◽  
Author(s):  
Ahmadreza Eslami ◽  
Michael Negnevitsky ◽  
Evan Franklin ◽  
Sarah Lyden

2021 ◽  
Vol 11 (15) ◽  
pp. 7007
Author(s):  
Janusz P. Paplinski ◽  
Aleksandr Cariow

This article presents an efficient algorithm for computing a 10-point DFT. The proposed algorithm reduces the number of multiplications at the cost of a slight increase in the number of additions in comparison with the known algorithms. Using a 10-point DFT for harmonic power system analysis can improve accuracy and reduce errors caused by spectral leakage. This paper compares the computational complexity for an L×10M-point DFT with a 2M-point DFT.


2021 ◽  
Vol 35 ◽  
pp. 102290
Author(s):  
Hossein Jafari Siahroodi ◽  
Hamed Mojallali ◽  
Seyed saeid Mohtavipour

Sign in / Sign up

Export Citation Format

Share Document