Passive Networks for C-Band Multi-Carrier Wireless Backhaul Systems

Author(s):  
Giandomenico Cannone ◽  
Stefano Moscato ◽  
Matteo Oldoni
2021 ◽  
Vol E104.B (1) ◽  
pp. 118-127
Author(s):  
Yuxiang FU ◽  
Koji YAMAMOTO ◽  
Yusuke KODA ◽  
Takayuki NISHIO ◽  
Masahiro MORIKURA ◽  
...  

2019 ◽  
Author(s):  
Rajavelsamy R ◽  
Debabrata Das

5G promises to support new level of use cases that will deliver a better user experience. The 3rd Generation Partnership Project (3GPP) [1] defined 5G system introduced fundamental changes on top of its former cellular systems in several design areas, including security. Unlike in the legacy systems, the 5G architecture design considers Home control enhancements for roaming customer, tight collaboration with the 3rd Party Application servers, Unified Authentication framework to accommodate various category of devices and services, enhanced user privacy, and secured the new service based core network architecture. Further, 3GPP is investigating the enhancements to the 5G security aspects to support longer security key lengths, False Base station detection and wireless backhaul in the Phase-2 of 5G standardization [2]. This paper provides the key enhancements specified by the 3GPP for 5G system, particularly the differences to the 4G system and the rationale behind the decisions.


2021 ◽  
Vol 10 (7) ◽  
pp. 426
Author(s):  
Tingting Lan ◽  
Danyang Qin ◽  
Guanyu Sun

In recent years, due to the strong mobility, easy deployment, and low cost of unmanned aerial vehicles (UAV), great interest has arisen in utilizing UAVs to assist in wireless communication, especially for on-demand deployment in emergency situations and temporary events. However, UAVs can only provide users with data transmission services through wireless backhaul links established with a ground base station, and the limited capacity of the wireless backhaul link would limit the transmission speed of UAVs. Therefore, this paper designed a UAV-assisted wireless communication system that used cache technology and realized the transmission of multi-user data by using the mobility of UAVs and wireless cache technology. Considering the limited storage space and energy of UAVs, the joint optimization problem of the UAV’s trajectory, cache placement, and transmission power was established to minimize the mission time of the UAV. Since this problem was a non-convex problem, it was decomposed into three sub-problems: trajectory optimization, cache placement optimization, and power allocation optimization. An iterative algorithm based on the successive convex approximation and alternate optimization techniques was proposed to solve these three optimization problems. Finally, in the power allocation optimization, the proposed algorithm was improved by changing the optimization objective function. Numerical results showed that the algorithm had good performance and could effectively reduce the task completion time of the UAV.


2015 ◽  
Vol 33 ◽  
pp. 150-169 ◽  
Author(s):  
Carlos E. Andrade ◽  
Mauricio G.C. Resende ◽  
Weiyi Zhang ◽  
Rakesh K. Sinha ◽  
Kenneth C. Reichmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document