Hierarchical rule-based neural network for multi-object classification using invariant features

Author(s):  
N. Imamoglu ◽  
A. Eresen ◽  
A. M. Ozbayoglu
2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Author(s):  
MOUMITA GHOSH ◽  
RANADHIR GHOSH ◽  
BRIJESH VERMA

In this paper we propose a fully automated offline handwriting recognition system that incorporates rule based segmentation, contour based feature extraction, neural network validation, a hybrid neural network classifier and a hamming neural network lexicon. The work is based on our earlier promising results in this area using heuristic segmentation and contour based feature extraction. The segmentation is done using many heuristic based set of rules in an iterative manner and finally followed by a neural network validation system. The extraction of feature is performed using both contour and structure based feature extraction algorithm. The classification is performed by a hybrid neural network that incorporates a hybrid combination of evolutionary algorithm and matrix based solution method. Finally a hamming neural network is used as a lexicon. A benchmark dataset from CEDAR has been used for training and testing.


Author(s):  
Amira Ahmad Al-Sharkawy ◽  
Gehan A. Bahgat ◽  
Elsayed E. Hemayed ◽  
Samia Abdel-Razik Mashali

Object classification problem is essential in many applications nowadays. Human can easily classify objects in unconstrained environments easily. Classical classification techniques were far away from human performance. Thus, researchers try to mimic the human visual system till they reached the deep neural networks. This chapter gives a review and analysis in the field of the deep convolutional neural network usage in object classification under constrained and unconstrained environment. The chapter gives a brief review on the classical techniques of object classification and the development of bio-inspired computational models from neuroscience till the creation of deep neural networks. A review is given on the constrained environment issues: the hardware computing resources and memory, the object appearance and background, and the training and processing time. Datasets that are used to test the performance are analyzed according to the images environmental conditions, besides the dataset biasing is discussed.


2019 ◽  
Vol 56 (23) ◽  
pp. 231502 ◽  
Author(s):  
张苗辉 Zhang Miaohui ◽  
张博 Zhang Bo ◽  
高诚诚 Gao Chengcheng

Sign in / Sign up

Export Citation Format

Share Document