A Pre-study on the Layer Number Effect of Convolutional Neural Networks in Brain Tumor Classification

Author(s):  
Hedi Syamand Azat ◽  
Boran Sekeroglu ◽  
Kamil Dimililer
2020 ◽  
Vol 10 (14) ◽  
pp. 4915 ◽  
Author(s):  
Sanjiban Sekhar Roy ◽  
Nishant Rodrigues ◽  
Y-h. Taguchi

Brain tumor classification is a challenging task in the field of medical image processing. Technology has now enabled medical doctors to have additional aid for diagnosis. We aim to classify brain tumors using MRI images, which were collected from anonymous patients and artificial brain simulators. In this article, we carry out a comparative study between Simple Artificial Neural Networks with dropout, Basic Convolutional Neural Networks (CNN), and Dilated Convolutional Neural Networks. The experimental results shed light on the high classification performance (accuracy 97%) of Dilated CNN. On the other hand, Dilated CNN suffers from the gridding phenomenon. An incremental, even number dilation rate takes advantage of the reduced computational overhead and also overcomes the adverse effects of gridding. Comparative analysis between different combinations of dilation rates for the different convolution layers, help validate the results. The computational overhead in terms of efficiency for training the model to reach an acceptable threshold accuracy of 90% is another parameter to compare the model performance.


2018 ◽  
Vol 11 (3) ◽  
pp. 1457-1461 ◽  
Author(s):  
J. Seetha ◽  
S. Selvakumar Raja

The brain tumors, are the most common and aggressive disease, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of patients. Generally, various image techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound image are used to evaluate the tumor in a brain, lung, liver, breast, prostate…etc. Especially, in this work MRI images are used to diagnose tumor in the brain. However the huge amount of data generated by MRI scan thwarts manual classification of tumor vs non-tumor in a particular time. But it having some limitation (i.e) accurate quantitative measurements is provided for limited number of images. Hence trusted and automatic classification scheme are essential to prevent the death rate of human. The automatic brain tumor classification is very challenging task in large spatial and structural variability of surrounding region of brain tumor. In this work, automatic brain tumor detection is proposed by using Convolutional Neural Networks (CNN) classification. The deeper architecture design is performed by using small kernels. The weight of the neuron is given as small. Experimental results show that the CNN archives rate of 97.5% accuracy with low complexity and compared with the all other state of arts methods.


2018 ◽  
Vol 81 (4) ◽  
pp. 419-427 ◽  
Author(s):  
Sajid Iqbal ◽  
M. Usman Ghani ◽  
Tanzila Saba ◽  
Amjad Rehman

Sign in / Sign up

Export Citation Format

Share Document