Detection of turn short circuit fault in PMSM variable speed based on adaptive fuzzy logic and sliding-mode control

Author(s):  
A. Bechkaoui ◽  
K. Ouamrane ◽  
A. Ameur ◽  
D. Taibi
Author(s):  
Haitao Liu ◽  
Tie Zhang

Sliding mode control is a very attractive control scheme with strong robustness to structured and unstructured uncertainties as well as to external disturbances. In this paper, a robust fuzzy sliding mode controller, which is combined with an adaptive fuzzy logic system, is proposed to improve the control performance of the robotic manipulator with kinematic and dynamic uncertainties. In this controller, the sliding mode control is employed to improve the control accuracy and the robustness of the robotic manipulator, and the fuzzy logic control is adopted to approximate various uncertainties and to eliminate the chattering without the help of any prior knowledge of system uncertainties. The effectiveness of the proposed controller is then verified by the simulations on a 2-DOF (degrees of freedom) robotic manipulator and the experiments on an SCARA robot with four degrees of freedom. Simulated and experimental results indicate that the proposed controller is effective in the robust tracking of the robotic manipulator with kinematic and dynamic uncertainties.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yuanchun Li ◽  
He Wang ◽  
Bo Zhao ◽  
Keping Liu

For the trajectory control of the probe soft landing on the asteroids with weak gravitational field, this paper presents a combined integral sliding mode control with an adaptive fuzzy logic system, named adaptive fuzzy sliding mode control (AFSMC) scheme. Considering the uncertainty of the orbit dynamics model in the small body fixed coordinate system, and the polyhedron modeling uncertainty in the gravitational potential, a fuzzy logic system is adopted to approximate the upper bound of the uncertainties. In addition, a robust control item is introduced to compensate for the approximation error of fuzzy logic system. The designed adaptive law and robust item make the closed-loop control stable and the tracking errors are convergent to zero. The controller not only guarantees the rapidity and accuracy of the desired trajectory tracking, but also enhances the robustness of the control system, improving the dynamic tracking performance for the probe soft landing on asteroids. Finally, the contrastive simulation results are presented to show the feasibility and effectiveness of the proposed control scheme.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 360-373
Author(s):  
Hong Wang ◽  
Mingqin Zhang ◽  
Ruijun Zhang ◽  
Lixin Liu

In order to effectively suppress horizontal vibration of the ultra-high-speed elevator car system. Firstly, considering the nonlinearity of guide shoe, parameter uncertainties, and uncertain external disturbances of the elevator car system, a more practical active control model for horizontal vibration of the 4-DOF ultra-high-speed elevator car system is constructed and the rationality of the established model is verified by real elevator experiment. Secondly, a predictive sliding mode controller based on adaptive fuzzy (PSMC-AF) is proposed to reduce the horizontal vibration of the car system, the predictive sliding mode control law is achieved by optimizing the predictive sliding mode performance index. Simultaneously, in order to decrease the influence of uncertainty of the car system, a fuzzy logic system (FLS) is designed to approximate the compound uncertain disturbance term (CUDT) on-line. Furthermore, the continuous smooth hyperbolic tangent function (HTF) is introduced into the sliding mode switching term to compensate the fuzzy approximation error. The adaptive laws are designed to estimate the error gain and slope parameter, so as to increase the robustness of the system. Finally, numerical simulations are conducted on some representative guide rail excitations and the results are compared to the existing solution and passive system. The analysis has confirmed the effectiveness and robustness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document